langchain/libs/partners/openai
ccurme 6e63ccba84
openai[minor]: release 0.3 (#29100)
## Goal

Solve the following problems with `langchain-openai`:

- Structured output with `o1` [breaks out of the
box](https://langchain.slack.com/archives/C050X0VTN56/p1735232400232099).
- `with_structured_output` by default does not use OpenAI’s [structured
output
feature](https://platform.openai.com/docs/guides/structured-outputs).
- We override API defaults for temperature and other parameters.

## Breaking changes:

- Default method for structured output is changing to OpenAI’s dedicated
[structured output
feature](https://platform.openai.com/docs/guides/structured-outputs).
For schemas specified via TypedDict or JSON schema, strict schema
validation is disabled by default but can be enabled by specifying
`strict=True`.
- To recover previous default, pass `method="function_calling"` into
`with_structured_output`.
- Models that don’t support `method="json_schema"` (e.g., `gpt-4` and
`gpt-3.5-turbo`, currently the default model for ChatOpenAI) will raise
an error unless `method` is explicitly specified.
- To recover previous default, pass `method="function_calling"` into
`with_structured_output`.
- Schemas specified via Pydantic `BaseModel` that have fields with
non-null defaults or metadata (like min/max constraints) will raise an
error.
- To recover previous default, pass `method="function_calling"` into
`with_structured_output`.
- `strict` now defaults to False for `method="json_schema"` when schemas
are specified via TypedDict or JSON schema.
- To recover previous behavior, use `with_structured_output(schema,
strict=True)`
- Schemas specified via Pydantic V1 will raise a warning (and use
`method="function_calling"`) unless `method` is explicitly specified.
- To remove the warning, pass `method="function_calling"` into
`with_structured_output`.
- Streaming with default structured output method / Pydantic schema no
longer generates intermediate streamed chunks.
- To recover previous behavior, pass `method="function_calling"` into
`with_structured_output`.
- We no longer override default temperature (was 0.7 in LangChain, now
will follow OpenAI, currently 1.0).
- To recover previous behavior, initialize `ChatOpenAI` or
`AzureChatOpenAI` with `temperature=0.7`.
- Note: conceptually there is a difference between forcing a tool call
and forcing a response format. Tool calls may have more concise
arguments vs. generating content adhering to a schema. Prompts may need
to be adjusted to recover desired behavior.

---------

Co-authored-by: Jacob Lee <jacoblee93@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2025-01-10 10:50:32 -05:00
..
langchain_openai openai[minor]: release 0.3 (#29100) 2025-01-10 10:50:32 -05:00
scripts multiple: pydantic 2 compatibility, v0.3 (#26443) 2024-09-13 14:38:45 -07:00
tests openai[minor]: release 0.3 (#29100) 2025-01-10 10:50:32 -05:00
.gitignore openai: audio modality, remove sockets from unit tests (#27436) 2024-10-18 08:02:09 -07:00
LICENSE
Makefile openai: audio modality, remove sockets from unit tests (#27436) 2024-10-18 08:02:09 -07:00
poetry.lock openai[minor]: release 0.3 (#29100) 2025-01-10 10:50:32 -05:00
pyproject.toml openai[minor]: release 0.3 (#29100) 2025-01-10 10:50:32 -05:00
README.md

langchain-openai

This package contains the LangChain integrations for OpenAI through their openai SDK.

Installation and Setup

  • Install the LangChain partner package
pip install langchain-openai
  • Get an OpenAI api key and set it as an environment variable (OPENAI_API_KEY)

LLM

See a usage example.

from langchain_openai import OpenAI

If you are using a model hosted on Azure, you should use different wrapper for that:

from langchain_openai import AzureOpenAI

For a more detailed walkthrough of the Azure wrapper, see here

Chat model

See a usage example.

from langchain_openai import ChatOpenAI

If you are using a model hosted on Azure, you should use different wrapper for that:

from langchain_openai import AzureChatOpenAI

For a more detailed walkthrough of the Azure wrapper, see here

Text Embedding Model

See a usage example

from langchain_openai import OpenAIEmbeddings

If you are using a model hosted on Azure, you should use different wrapper for that:

from langchain_openai import AzureOpenAIEmbeddings

For a more detailed walkthrough of the Azure wrapper, see here