mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-28 06:48:50 +00:00
Assigning missed defaults in various classes. Most clients were being assigned during the `model_validator(mode="before")` step, so this change should amount to a no-op in those cases. --- This PR was autogenerated using gritql ```shell grit apply 'class_definition(name=$C, $body, superclasses=$S) where { $C <: ! "Config", // Does not work in this scope, but works after class_definition $body <: block($statements), $statements <: some bubble assignment(left=$x, right=$y, type=$t) as $A where { or { $y <: `Field($z)`, $x <: "model_config" } }, // And has either Any or Optional fields without a default $statements <: some bubble assignment(left=$x, right=$y, type=$t) as $A where { $t <: or { r"Optional.*", r"Any", r"Union[None, .*]", r"Union[.*, None, .*]", r"Union[.*, None]", }, $y <: ., // Match empty node $t => `$t = None`, }, } ' --language python . ```
87 lines
3.1 KiB
Python
87 lines
3.1 KiB
Python
from typing import Any, Dict, List, cast
|
|
|
|
from langchain_core.callbacks import CallbackManagerForRetrieverRun
|
|
from langchain_core.documents import Document
|
|
from langchain_core.retrievers import BaseRetriever
|
|
from pydantic import Field
|
|
|
|
|
|
class LlamaIndexRetriever(BaseRetriever):
|
|
"""`LlamaIndex` retriever.
|
|
|
|
It is used for the question-answering with sources over
|
|
an LlamaIndex data structure."""
|
|
|
|
index: Any = None
|
|
"""LlamaIndex index to query."""
|
|
query_kwargs: Dict = Field(default_factory=dict)
|
|
"""Keyword arguments to pass to the query method."""
|
|
|
|
def _get_relevant_documents(
|
|
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
|
|
) -> List[Document]:
|
|
"""Get documents relevant for a query."""
|
|
try:
|
|
from llama_index.core.base.response.schema import Response
|
|
from llama_index.core.indices.base import BaseGPTIndex
|
|
except ImportError:
|
|
raise ImportError(
|
|
"You need to install `pip install llama-index` to use this retriever."
|
|
)
|
|
index = cast(BaseGPTIndex, self.index)
|
|
|
|
response = index.query(query, **self.query_kwargs)
|
|
response = cast(Response, response)
|
|
# parse source nodes
|
|
docs = []
|
|
for source_node in response.source_nodes:
|
|
metadata = source_node.metadata or {}
|
|
docs.append(
|
|
Document(page_content=source_node.get_content(), metadata=metadata)
|
|
)
|
|
return docs
|
|
|
|
|
|
class LlamaIndexGraphRetriever(BaseRetriever):
|
|
"""`LlamaIndex` graph data structure retriever.
|
|
|
|
It is used for question-answering with sources over an LlamaIndex
|
|
graph data structure."""
|
|
|
|
graph: Any = None
|
|
"""LlamaIndex graph to query."""
|
|
query_configs: List[Dict] = Field(default_factory=list)
|
|
"""List of query configs to pass to the query method."""
|
|
|
|
def _get_relevant_documents(
|
|
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
|
|
) -> List[Document]:
|
|
"""Get documents relevant for a query."""
|
|
try:
|
|
from llama_index.core.base.response.schema import Response
|
|
from llama_index.core.composability.base import (
|
|
QUERY_CONFIG_TYPE,
|
|
ComposableGraph,
|
|
)
|
|
except ImportError:
|
|
raise ImportError(
|
|
"You need to install `pip install llama-index` to use this retriever."
|
|
)
|
|
graph = cast(ComposableGraph, self.graph)
|
|
|
|
# for now, inject response_mode="no_text" into query configs
|
|
for query_config in self.query_configs:
|
|
query_config["response_mode"] = "no_text"
|
|
query_configs = cast(List[QUERY_CONFIG_TYPE], self.query_configs)
|
|
response = graph.query(query, query_configs=query_configs)
|
|
response = cast(Response, response)
|
|
|
|
# parse source nodes
|
|
docs = []
|
|
for source_node in response.source_nodes:
|
|
metadata = source_node.metadata or {}
|
|
docs.append(
|
|
Document(page_content=source_node.get_content(), metadata=metadata)
|
|
)
|
|
return docs
|