langchain/libs/experimental/tests/unit_tests/test_smartllm.py
Bagatur a0c2281540
infra: update mypy 1.10, ruff 0.5 (#23721)
```python
"""python scripts/update_mypy_ruff.py"""
import glob
import tomllib
from pathlib import Path

import toml
import subprocess
import re

ROOT_DIR = Path(__file__).parents[1]


def main():
    for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True):
        print(path)
        with open(path, "rb") as f:
            pyproject = tomllib.load(f)
        try:
            pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = (
                "^1.10"
            )
            pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = (
                "^0.5"
            )
        except KeyError:
            continue
        with open(path, "w") as f:
            toml.dump(pyproject, f)
        cwd = "/".join(path.split("/")[:-1])
        completed = subprocess.run(
            "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color",
            cwd=cwd,
            shell=True,
            capture_output=True,
            text=True,
        )
        logs = completed.stdout.split("\n")

        to_ignore = {}
        for l in logs:
            if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l):
                path, line_no, error_type = re.match(
                    "^(.*)\:(\d+)\: error:.*\[(.*)\]", l
                ).groups()
                if (path, line_no) in to_ignore:
                    to_ignore[(path, line_no)].append(error_type)
                else:
                    to_ignore[(path, line_no)] = [error_type]
        print(len(to_ignore))
        for (error_path, line_no), error_types in to_ignore.items():
            all_errors = ", ".join(error_types)
            full_path = f"{cwd}/{error_path}"
            try:
                with open(full_path, "r") as f:
                    file_lines = f.readlines()
            except FileNotFoundError:
                continue
            file_lines[int(line_no) - 1] = (
                file_lines[int(line_no) - 1][:-1] + f"  # type: ignore[{all_errors}]\n"
            )
            with open(full_path, "w") as f:
                f.write("".join(file_lines))

        subprocess.run(
            "poetry run ruff format .; poetry run ruff --select I --fix .",
            cwd=cwd,
            shell=True,
            capture_output=True,
            text=True,
        )


if __name__ == "__main__":
    main()

```
2024-07-03 10:33:27 -07:00

122 lines
4.4 KiB
Python

"""Test SmartLLM."""
from langchain_community.chat_models import FakeListChatModel
from langchain_community.llms import FakeListLLM
from langchain_core.prompts.prompt import PromptTemplate
from langchain_experimental.smart_llm import SmartLLMChain
def test_ideation() -> None:
# test that correct responses are returned
responses = ["Idea 1", "Idea 2", "Idea 3"]
llm = FakeListLLM(responses=responses)
prompt = PromptTemplate(
input_variables=["product"],
template="What is a good name for a company that makes {product}?",
)
chain = SmartLLMChain(llm=llm, prompt=prompt)
prompt_value, _ = chain.prep_prompts({"product": "socks"})
chain.history.question = prompt_value.to_string()
results = chain._ideate()
assert results == responses
# test that correct number of responses are returned
for i in range(1, 5):
responses = [f"Idea {j+1}" for j in range(i)]
llm = FakeListLLM(responses=responses)
chain = SmartLLMChain(llm=llm, prompt=prompt, n_ideas=i)
prompt_value, _ = chain.prep_prompts({"product": "socks"})
chain.history.question = prompt_value.to_string()
results = chain._ideate()
assert len(results) == i
def test_critique() -> None:
response = "Test Critique"
llm = FakeListLLM(responses=[response])
prompt = PromptTemplate(
input_variables=["product"],
template="What is a good name for a company that makes {product}?",
)
chain = SmartLLMChain(llm=llm, prompt=prompt, n_ideas=2)
prompt_value, _ = chain.prep_prompts({"product": "socks"})
chain.history.question = prompt_value.to_string()
chain.history.ideas = ["Test Idea 1", "Test Idea 2"]
result = chain._critique()
assert result == response
def test_resolver() -> None:
response = "Test resolution"
llm = FakeListLLM(responses=[response])
prompt = PromptTemplate(
input_variables=["product"],
template="What is a good name for a company that makes {product}?",
)
chain = SmartLLMChain(llm=llm, prompt=prompt, n_ideas=2)
prompt_value, _ = chain.prep_prompts({"product": "socks"})
chain.history.question = prompt_value.to_string()
chain.history.ideas = ["Test Idea 1", "Test Idea 2"]
chain.history.critique = "Test Critique"
result = chain._resolve()
assert result == response
def test_all_steps() -> None:
joke = "Why did the chicken cross the Mobius strip?"
response = "Resolution response"
ideation_llm = FakeListLLM(responses=["Ideation response" for _ in range(20)])
critique_llm = FakeListLLM(responses=["Critique response" for _ in range(20)])
resolver_llm = FakeListLLM(responses=[response for _ in range(20)])
prompt = PromptTemplate(
input_variables=["joke"],
template="Explain this joke to me: {joke}?",
)
chain = SmartLLMChain(
ideation_llm=ideation_llm,
critique_llm=critique_llm,
resolver_llm=resolver_llm,
prompt=prompt,
)
result = chain(joke)
assert result["joke"] == joke
assert result["resolution"] == response
def test_intermediate_output() -> None:
joke = "Why did the chicken cross the Mobius strip?"
llm = FakeListLLM(responses=[f"Response {i+1}" for i in range(5)])
prompt = PromptTemplate(
input_variables=["joke"],
template="Explain this joke to me: {joke}?",
)
chain = SmartLLMChain(llm=llm, prompt=prompt, return_intermediate_steps=True)
result = chain(joke)
assert result["joke"] == joke
assert result["ideas"] == [f"Response {i+1}" for i in range(3)]
assert result["critique"] == "Response 4"
assert result["resolution"] == "Response 5"
def test_all_steps_with_chat_model() -> None:
joke = "Why did the chicken cross the Mobius strip?"
response = "Resolution response"
ideation_llm = FakeListChatModel(responses=["Ideation response" for _ in range(20)])
critique_llm = FakeListChatModel(responses=["Critique response" for _ in range(20)])
resolver_llm = FakeListChatModel(responses=[response for _ in range(20)])
prompt = PromptTemplate(
input_variables=["joke"],
template="Explain this joke to me: {joke}?",
)
chain = SmartLLMChain(
ideation_llm=ideation_llm,
critique_llm=critique_llm,
resolver_llm=resolver_llm,
prompt=prompt,
)
result = chain(joke)
assert result["joke"] == joke
assert result["resolution"] == response