mirror of
https://github.com/hwchase17/langchain.git
synced 2025-08-07 03:56:39 +00:00
**Description:** : Add SambaNova Cloud Chat model community integration Includes - chat model integration (following Standardize ChatModel docstrings) - tests - docs usage notebook (following Standardize ChatModel integration docs) https://cloud.sambanova.ai/ --------- Co-authored-by: luisfucros <luisfucros@gmail.com> Co-authored-by: ccurme <chester.curme@gmail.com>
466 lines
16 KiB
Python
466 lines
16 KiB
Python
import json
|
|
from typing import Any, Dict, Iterator, List, Optional
|
|
|
|
import requests
|
|
from langchain_core.callbacks import (
|
|
CallbackManagerForLLMRun,
|
|
)
|
|
from langchain_core.language_models.chat_models import (
|
|
BaseChatModel,
|
|
generate_from_stream,
|
|
)
|
|
from langchain_core.messages import (
|
|
AIMessage,
|
|
AIMessageChunk,
|
|
BaseMessage,
|
|
ChatMessage,
|
|
HumanMessage,
|
|
SystemMessage,
|
|
ToolMessage,
|
|
)
|
|
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
|
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
|
|
from pydantic import Field, SecretStr
|
|
|
|
|
|
class ChatSambaNovaCloud(BaseChatModel):
|
|
"""
|
|
SambaNova Cloud chat model.
|
|
|
|
Setup:
|
|
To use, you should have the environment variables
|
|
``SAMBANOVA_URL`` set with your SambaNova Cloud URL.
|
|
``SAMBANOVA_API_KEY`` set with your SambaNova Cloud API Key.
|
|
http://cloud.sambanova.ai/
|
|
Example:
|
|
.. code-block:: python
|
|
ChatSambaNovaCloud(
|
|
sambanova_url = SambaNova cloud endpoint URL,
|
|
sambanova_api_key = set with your SambaNova cloud API key,
|
|
model = model name,
|
|
streaming = set True for use streaming API
|
|
max_tokens = max number of tokens to generate,
|
|
temperature = model temperature,
|
|
top_p = model top p,
|
|
top_k = model top k,
|
|
stream_options = include usage to get generation metrics
|
|
)
|
|
|
|
Key init args — completion params:
|
|
model: str
|
|
The name of the model to use, e.g., llama3-8b.
|
|
streaming: bool
|
|
Whether to use streaming or not
|
|
max_tokens: int
|
|
max tokens to generate
|
|
temperature: float
|
|
model temperature
|
|
top_p: float
|
|
model top p
|
|
top_k: int
|
|
model top k
|
|
stream_options: dict
|
|
stream options, include usage to get generation metrics
|
|
|
|
Key init args — client params:
|
|
sambanova_url: str
|
|
SambaNova Cloud Url
|
|
sambanova_api_key: str
|
|
SambaNova Cloud api key
|
|
|
|
Instantiate:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.chat_models import ChatSambaNovaCloud
|
|
|
|
chat = ChatSambaNovaCloud(
|
|
sambanova_url = SambaNova cloud endpoint URL,
|
|
sambanova_api_key = set with your SambaNova cloud API key,
|
|
model = model name,
|
|
streaming = set True for streaming
|
|
max_tokens = max number of tokens to generate,
|
|
temperature = model temperature,
|
|
top_p = model top p,
|
|
top_k = model top k,
|
|
stream_options = include usage to get generation metrics
|
|
)
|
|
Invoke:
|
|
.. code-block:: python
|
|
messages = [
|
|
SystemMessage(content="your are an AI assistant."),
|
|
HumanMessage(content="tell me a joke."),
|
|
]
|
|
response = chat.invoke(messages)
|
|
|
|
Stream:
|
|
.. code-block:: python
|
|
|
|
for chunk in chat.stream(messages):
|
|
print(chunk.content, end="", flush=True)
|
|
|
|
Async:
|
|
.. code-block:: python
|
|
|
|
response = chat.ainvoke(messages)
|
|
await response
|
|
|
|
Token usage:
|
|
.. code-block:: python
|
|
response = chat.invoke(messages)
|
|
print(response.response_metadata["usage"]["prompt_tokens"]
|
|
print(response.response_metadata["usage"]["total_tokens"]
|
|
|
|
Response metadata
|
|
.. code-block:: python
|
|
|
|
response = chat.invoke(messages)
|
|
print(response.response_metadata)
|
|
"""
|
|
|
|
sambanova_url: str = Field(default="")
|
|
"""SambaNova Cloud Url"""
|
|
|
|
sambanova_api_key: SecretStr = Field(default="")
|
|
"""SambaNova Cloud api key"""
|
|
|
|
model: str = Field(default="llama3-8b")
|
|
"""The name of the model"""
|
|
|
|
streaming: bool = Field(default=False)
|
|
"""Whether to use streaming or not"""
|
|
|
|
max_tokens: int = Field(default=1024)
|
|
"""max tokens to generate"""
|
|
|
|
temperature: float = Field(default=0.7)
|
|
"""model temperature"""
|
|
|
|
top_p: float = Field(default=0.0)
|
|
"""model top p"""
|
|
|
|
top_k: int = Field(default=1)
|
|
"""model top k"""
|
|
|
|
stream_options: dict = Field(default={"include_usage": True})
|
|
"""stream options, include usage to get generation metrics"""
|
|
|
|
class Config:
|
|
populate_by_name = True
|
|
|
|
@classmethod
|
|
def is_lc_serializable(cls) -> bool:
|
|
"""Return whether this model can be serialized by Langchain."""
|
|
return False
|
|
|
|
@property
|
|
def lc_secrets(self) -> Dict[str, str]:
|
|
return {"sambanova_api_key": "sambanova_api_key"}
|
|
|
|
@property
|
|
def _identifying_params(self) -> Dict[str, Any]:
|
|
"""Return a dictionary of identifying parameters.
|
|
|
|
This information is used by the LangChain callback system, which
|
|
is used for tracing purposes make it possible to monitor LLMs.
|
|
"""
|
|
return {
|
|
"model": self.model,
|
|
"streaming": self.streaming,
|
|
"max_tokens": self.max_tokens,
|
|
"temperature": self.temperature,
|
|
"top_p": self.top_p,
|
|
"top_k": self.top_k,
|
|
"stream_options": self.stream_options,
|
|
}
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Get the type of language model used by this chat model."""
|
|
return "sambanovacloud-chatmodel"
|
|
|
|
def __init__(self, **kwargs: Any) -> None:
|
|
"""init and validate environment variables"""
|
|
kwargs["sambanova_url"] = get_from_dict_or_env(
|
|
kwargs,
|
|
"sambanova_url",
|
|
"SAMBANOVA_URL",
|
|
default="https://api.sambanova.ai/v1/chat/completions",
|
|
)
|
|
kwargs["sambanova_api_key"] = convert_to_secret_str(
|
|
get_from_dict_or_env(kwargs, "sambanova_api_key", "SAMBANOVA_API_KEY")
|
|
)
|
|
super().__init__(**kwargs)
|
|
|
|
def _handle_request(
|
|
self, messages_dicts: List[Dict], stop: Optional[List[str]] = None
|
|
) -> Dict[str, Any]:
|
|
"""
|
|
Performs a post request to the LLM API.
|
|
|
|
Args:
|
|
messages_dicts: List of role / content dicts to use as input.
|
|
stop: list of stop tokens
|
|
|
|
Returns:
|
|
An iterator of response dicts.
|
|
"""
|
|
data = {
|
|
"messages": messages_dicts,
|
|
"max_tokens": self.max_tokens,
|
|
"stop": stop,
|
|
"model": self.model,
|
|
"temperature": self.temperature,
|
|
"top_p": self.top_p,
|
|
"top_k": self.top_k,
|
|
}
|
|
http_session = requests.Session()
|
|
response = http_session.post(
|
|
self.sambanova_url,
|
|
headers={
|
|
"Authorization": f"Bearer {self.sambanova_api_key.get_secret_value()}",
|
|
"Content-Type": "application/json",
|
|
},
|
|
json=data,
|
|
)
|
|
if response.status_code != 200:
|
|
raise RuntimeError(
|
|
f"Sambanova /complete call failed with status code "
|
|
f"{response.status_code}."
|
|
f"{response.text}."
|
|
)
|
|
response_dict = response.json()
|
|
if response_dict.get("error"):
|
|
raise RuntimeError(
|
|
f"Sambanova /complete call failed with status code "
|
|
f"{response.status_code}."
|
|
f"{response_dict}."
|
|
)
|
|
return response_dict
|
|
|
|
def _handle_streaming_request(
|
|
self, messages_dicts: List[Dict], stop: Optional[List[str]] = None
|
|
) -> Iterator[Dict]:
|
|
"""
|
|
Performs an streaming post request to the LLM API.
|
|
|
|
Args:
|
|
messages_dicts: List of role / content dicts to use as input.
|
|
stop: list of stop tokens
|
|
|
|
Returns:
|
|
An iterator of response dicts.
|
|
"""
|
|
try:
|
|
import sseclient
|
|
except ImportError:
|
|
raise ImportError(
|
|
"could not import sseclient library"
|
|
"Please install it with `pip install sseclient-py`."
|
|
)
|
|
data = {
|
|
"messages": messages_dicts,
|
|
"max_tokens": self.max_tokens,
|
|
"stop": stop,
|
|
"model": self.model,
|
|
"temperature": self.temperature,
|
|
"top_p": self.top_p,
|
|
"top_k": self.top_k,
|
|
"stream": True,
|
|
"stream_options": self.stream_options,
|
|
}
|
|
http_session = requests.Session()
|
|
response = http_session.post(
|
|
self.sambanova_url,
|
|
headers={
|
|
"Authorization": f"Bearer {self.sambanova_api_key.get_secret_value()}",
|
|
"Content-Type": "application/json",
|
|
},
|
|
json=data,
|
|
stream=True,
|
|
)
|
|
|
|
client = sseclient.SSEClient(response)
|
|
|
|
if response.status_code != 200:
|
|
raise RuntimeError(
|
|
f"Sambanova /complete call failed with status code "
|
|
f"{response.status_code}."
|
|
f"{response.text}."
|
|
)
|
|
|
|
for event in client.events():
|
|
chunk = {
|
|
"event": event.event,
|
|
"data": event.data,
|
|
"status_code": response.status_code,
|
|
}
|
|
|
|
if chunk["event"] == "error_event" or chunk["status_code"] != 200:
|
|
raise RuntimeError(
|
|
f"Sambanova /complete call failed with status code "
|
|
f"{chunk['status_code']}."
|
|
f"{chunk}."
|
|
)
|
|
|
|
try:
|
|
# check if the response is a final event
|
|
# in that case event data response is '[DONE]'
|
|
if chunk["data"] != "[DONE]":
|
|
if isinstance(chunk["data"], str):
|
|
data = json.loads(chunk["data"])
|
|
else:
|
|
raise RuntimeError(
|
|
f"Sambanova /complete call failed with status code "
|
|
f"{chunk['status_code']}."
|
|
f"{chunk}."
|
|
)
|
|
if data.get("error"):
|
|
raise RuntimeError(
|
|
f"Sambanova /complete call failed with status code "
|
|
f"{chunk['status_code']}."
|
|
f"{chunk}."
|
|
)
|
|
yield data
|
|
except Exception:
|
|
raise Exception(
|
|
f"Error getting content chunk raw streamed response: {chunk}"
|
|
)
|
|
|
|
def _convert_message_to_dict(self, message: BaseMessage) -> Dict[str, Any]:
|
|
"""
|
|
convert a BaseMessage to a dictionary with Role / content
|
|
|
|
Args:
|
|
message: BaseMessage
|
|
|
|
Returns:
|
|
messages_dict: role / content dict
|
|
"""
|
|
if isinstance(message, ChatMessage):
|
|
message_dict = {"role": message.role, "content": message.content}
|
|
elif isinstance(message, SystemMessage):
|
|
message_dict = {"role": "system", "content": message.content}
|
|
elif isinstance(message, HumanMessage):
|
|
message_dict = {"role": "user", "content": message.content}
|
|
elif isinstance(message, AIMessage):
|
|
message_dict = {"role": "assistant", "content": message.content}
|
|
elif isinstance(message, ToolMessage):
|
|
message_dict = {"role": "tool", "content": message.content}
|
|
else:
|
|
raise TypeError(f"Got unknown type {message}")
|
|
return message_dict
|
|
|
|
def _create_message_dicts(
|
|
self, messages: List[BaseMessage]
|
|
) -> List[Dict[str, Any]]:
|
|
"""
|
|
convert a lit of BaseMessages to a list of dictionaries with Role / content
|
|
|
|
Args:
|
|
messages: list of BaseMessages
|
|
|
|
Returns:
|
|
messages_dicts: list of role / content dicts
|
|
"""
|
|
message_dicts = [self._convert_message_to_dict(m) for m in messages]
|
|
return message_dicts
|
|
|
|
def _generate(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> ChatResult:
|
|
"""
|
|
SambaNovaCloud chat model logic.
|
|
|
|
Call SambaNovaCloud API.
|
|
|
|
Args:
|
|
messages: the prompt composed of a list of messages.
|
|
stop: a list of strings on which the model should stop generating.
|
|
If generation stops due to a stop token, the stop token itself
|
|
SHOULD BE INCLUDED as part of the output. This is not enforced
|
|
across models right now, but it's a good practice to follow since
|
|
it makes it much easier to parse the output of the model
|
|
downstream and understand why generation stopped.
|
|
run_manager: A run manager with callbacks for the LLM.
|
|
"""
|
|
if self.streaming:
|
|
stream_iter = self._stream(
|
|
messages, stop=stop, run_manager=run_manager, **kwargs
|
|
)
|
|
if stream_iter:
|
|
return generate_from_stream(stream_iter)
|
|
messages_dicts = self._create_message_dicts(messages)
|
|
response = self._handle_request(messages_dicts, stop)
|
|
message = AIMessage(
|
|
content=response["choices"][0]["message"]["content"],
|
|
additional_kwargs={},
|
|
response_metadata={
|
|
"finish_reason": response["choices"][0]["finish_reason"],
|
|
"usage": response.get("usage"),
|
|
"model_name": response["model"],
|
|
"system_fingerprint": response["system_fingerprint"],
|
|
"created": response["created"],
|
|
},
|
|
id=response["id"],
|
|
)
|
|
|
|
generation = ChatGeneration(message=message)
|
|
return ChatResult(generations=[generation])
|
|
|
|
def _stream(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> Iterator[ChatGenerationChunk]:
|
|
"""
|
|
Stream the output of the SambaNovaCloud chat model.
|
|
|
|
Args:
|
|
messages: the prompt composed of a list of messages.
|
|
stop: a list of strings on which the model should stop generating.
|
|
If generation stops due to a stop token, the stop token itself
|
|
SHOULD BE INCLUDED as part of the output. This is not enforced
|
|
across models right now, but it's a good practice to follow since
|
|
it makes it much easier to parse the output of the model
|
|
downstream and understand why generation stopped.
|
|
run_manager: A run manager with callbacks for the LLM.
|
|
"""
|
|
messages_dicts = self._create_message_dicts(messages)
|
|
finish_reason = None
|
|
for partial_response in self._handle_streaming_request(messages_dicts, stop):
|
|
if len(partial_response["choices"]) > 0:
|
|
finish_reason = partial_response["choices"][0].get("finish_reason")
|
|
content = partial_response["choices"][0]["delta"]["content"]
|
|
id = partial_response["id"]
|
|
chunk = ChatGenerationChunk(
|
|
message=AIMessageChunk(content=content, id=id, additional_kwargs={})
|
|
)
|
|
else:
|
|
content = ""
|
|
id = partial_response["id"]
|
|
metadata = {
|
|
"finish_reason": finish_reason,
|
|
"usage": partial_response.get("usage"),
|
|
"model_name": partial_response["model"],
|
|
"system_fingerprint": partial_response["system_fingerprint"],
|
|
"created": partial_response["created"],
|
|
}
|
|
chunk = ChatGenerationChunk(
|
|
message=AIMessageChunk(
|
|
content=content,
|
|
id=id,
|
|
response_metadata=metadata,
|
|
additional_kwargs={},
|
|
)
|
|
)
|
|
|
|
if run_manager:
|
|
run_manager.on_llm_new_token(chunk.text, chunk=chunk)
|
|
yield chunk
|