mirror of
https://github.com/hwchase17/langchain.git
synced 2025-07-05 20:58:25 +00:00
Signed-off-by: ChengZi <chen.zhang@zilliz.com> Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com> Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com> Co-authored-by: Dan O'Donovan <dan.odonovan@gmail.com> Co-authored-by: Tom Daniel Grande <tomdgrande@gmail.com> Co-authored-by: Grande <Tom.Daniel.Grande@statsbygg.no> Co-authored-by: Bagatur <baskaryan@gmail.com> Co-authored-by: ccurme <chester.curme@gmail.com> Co-authored-by: Harrison Chase <hw.chase.17@gmail.com> Co-authored-by: Tomaz Bratanic <bratanic.tomaz@gmail.com> Co-authored-by: ZhangShenao <15201440436@163.com> Co-authored-by: Friso H. Kingma <fhkingma@gmail.com> Co-authored-by: ChengZi <chen.zhang@zilliz.com> Co-authored-by: Nuno Campos <nuno@langchain.dev> Co-authored-by: Morgante Pell <morgantep@google.com>
219 lines
7.7 KiB
Python
219 lines
7.7 KiB
Python
"""Wrapper around Fireworks AI's Completion API."""
|
|
|
|
import logging
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
import requests
|
|
from aiohttp import ClientSession
|
|
from langchain_core.callbacks import (
|
|
AsyncCallbackManagerForLLMRun,
|
|
CallbackManagerForLLMRun,
|
|
)
|
|
from langchain_core.language_models.llms import LLM
|
|
from langchain_core.utils import get_pydantic_field_names
|
|
from langchain_core.utils.utils import build_extra_kwargs, secret_from_env
|
|
from pydantic import ConfigDict, Field, SecretStr, model_validator
|
|
|
|
from langchain_fireworks.version import __version__
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class Fireworks(LLM):
|
|
"""LLM models from `Fireworks`.
|
|
|
|
To use, you'll need an API key which you can find here:
|
|
https://fireworks.ai This can be passed in as init param
|
|
``fireworks_api_key`` or set as environment variable ``FIREWORKS_API_KEY``.
|
|
|
|
Fireworks AI API reference: https://readme.fireworks.ai/
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
response = fireworks.generate(["Tell me a joke."])
|
|
"""
|
|
|
|
base_url: str = "https://api.fireworks.ai/inference/v1/completions"
|
|
"""Base inference API URL."""
|
|
fireworks_api_key: SecretStr = Field(
|
|
alias="api_key",
|
|
default_factory=secret_from_env(
|
|
"FIREWORKS_API_KEY",
|
|
error_message=(
|
|
"You must specify an api key. "
|
|
"You can pass it an argument as `api_key=...` or "
|
|
"set the environment variable `FIREWORKS_API_KEY`."
|
|
),
|
|
),
|
|
)
|
|
"""Fireworks API key.
|
|
|
|
Automatically read from env variable `FIREWORKS_API_KEY` if not provided.
|
|
"""
|
|
model: str
|
|
"""Model name. Available models listed here:
|
|
https://readme.fireworks.ai/
|
|
"""
|
|
temperature: Optional[float] = None
|
|
"""Model temperature."""
|
|
top_p: Optional[float] = None
|
|
"""Used to dynamically adjust the number of choices for each predicted token based
|
|
on the cumulative probabilities. A value of 1 will always yield the same
|
|
output. A temperature less than 1 favors more correctness and is appropriate
|
|
for question answering or summarization. A value greater than 1 introduces more
|
|
randomness in the output.
|
|
"""
|
|
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
|
"""Holds any model parameters valid for `create` call not explicitly specified."""
|
|
top_k: Optional[int] = None
|
|
"""Used to limit the number of choices for the next predicted word or token. It
|
|
specifies the maximum number of tokens to consider at each step, based on their
|
|
probability of occurrence. This technique helps to speed up the generation
|
|
process and can improve the quality of the generated text by focusing on the
|
|
most likely options.
|
|
"""
|
|
max_tokens: Optional[int] = None
|
|
"""The maximum number of tokens to generate."""
|
|
repetition_penalty: Optional[float] = None
|
|
"""A number that controls the diversity of generated text by reducing the
|
|
likelihood of repeated sequences. Higher values decrease repetition.
|
|
"""
|
|
logprobs: Optional[int] = None
|
|
"""An integer that specifies how many top token log probabilities are included in
|
|
the response for each token generation step.
|
|
"""
|
|
|
|
model_config = ConfigDict(
|
|
extra="forbid",
|
|
populate_by_name=True,
|
|
)
|
|
|
|
@model_validator(mode="before")
|
|
@classmethod
|
|
def build_extra(cls, values: Dict[str, Any]) -> Any:
|
|
"""Build extra kwargs from additional params that were passed in."""
|
|
all_required_field_names = get_pydantic_field_names(cls)
|
|
extra = values.get("model_kwargs", {})
|
|
values["model_kwargs"] = build_extra_kwargs(
|
|
extra, values, all_required_field_names
|
|
)
|
|
return values
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of model."""
|
|
return "fireworks"
|
|
|
|
def _format_output(self, output: dict) -> str:
|
|
return output["choices"][0]["text"]
|
|
|
|
@staticmethod
|
|
def get_user_agent() -> str:
|
|
return f"langchain-fireworks/{__version__}"
|
|
|
|
@property
|
|
def default_params(self) -> Dict[str, Any]:
|
|
return {
|
|
"model": self.model,
|
|
"temperature": self.temperature,
|
|
"top_p": self.top_p,
|
|
"top_k": self.top_k,
|
|
"max_tokens": self.max_tokens,
|
|
"repetition_penalty": self.repetition_penalty,
|
|
}
|
|
|
|
def _call(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> str:
|
|
"""Call out to Fireworks's text generation endpoint.
|
|
|
|
Args:
|
|
prompt: The prompt to pass into the model.
|
|
|
|
Returns:
|
|
The string generated by the model..
|
|
"""
|
|
headers = {
|
|
"Authorization": f"Bearer {self.fireworks_api_key.get_secret_value()}",
|
|
"Content-Type": "application/json",
|
|
}
|
|
stop_to_use = stop[0] if stop and len(stop) == 1 else stop
|
|
payload: Dict[str, Any] = {
|
|
**self.default_params,
|
|
"prompt": prompt,
|
|
"stop": stop_to_use,
|
|
**kwargs,
|
|
}
|
|
|
|
# filter None values to not pass them to the http payload
|
|
payload = {k: v for k, v in payload.items() if v is not None}
|
|
response = requests.post(url=self.base_url, json=payload, headers=headers)
|
|
|
|
if response.status_code >= 500:
|
|
raise Exception(f"Fireworks Server: Error {response.status_code}")
|
|
elif response.status_code >= 400:
|
|
raise ValueError(f"Fireworks received an invalid payload: {response.text}")
|
|
elif response.status_code != 200:
|
|
raise Exception(
|
|
f"Fireworks returned an unexpected response with status "
|
|
f"{response.status_code}: {response.text}"
|
|
)
|
|
|
|
data = response.json()
|
|
output = self._format_output(data)
|
|
|
|
return output
|
|
|
|
async def _acall(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> str:
|
|
"""Call Fireworks model to get predictions based on the prompt.
|
|
|
|
Args:
|
|
prompt: The prompt to pass into the model.
|
|
|
|
Returns:
|
|
The string generated by the model.
|
|
"""
|
|
headers = {
|
|
"Authorization": f"Bearer {self.fireworks_api_key.get_secret_value()}",
|
|
"Content-Type": "application/json",
|
|
}
|
|
stop_to_use = stop[0] if stop and len(stop) == 1 else stop
|
|
payload: Dict[str, Any] = {
|
|
**self.default_params,
|
|
"prompt": prompt,
|
|
"stop": stop_to_use,
|
|
**kwargs,
|
|
}
|
|
|
|
# filter None values to not pass them to the http payload
|
|
payload = {k: v for k, v in payload.items() if v is not None}
|
|
async with ClientSession() as session:
|
|
async with session.post(
|
|
self.base_url, json=payload, headers=headers
|
|
) as response:
|
|
if response.status >= 500:
|
|
raise Exception(f"Fireworks Server: Error {response.status}")
|
|
elif response.status >= 400:
|
|
raise ValueError(
|
|
f"Fireworks received an invalid payload: {response.text}"
|
|
)
|
|
elif response.status != 200:
|
|
raise Exception(
|
|
f"Fireworks returned an unexpected response with status "
|
|
f"{response.status}: {response.text}"
|
|
)
|
|
|
|
response_json = await response.json()
|
|
output = self._format_output(response_json)
|
|
return output
|