mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-01 05:15:17 +00:00
```python """python scripts/update_mypy_ruff.py""" import glob import tomllib from pathlib import Path import toml import subprocess import re ROOT_DIR = Path(__file__).parents[1] def main(): for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True): print(path) with open(path, "rb") as f: pyproject = tomllib.load(f) try: pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = ( "^1.10" ) pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = ( "^0.5" ) except KeyError: continue with open(path, "w") as f: toml.dump(pyproject, f) cwd = "/".join(path.split("/")[:-1]) completed = subprocess.run( "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color", cwd=cwd, shell=True, capture_output=True, text=True, ) logs = completed.stdout.split("\n") to_ignore = {} for l in logs: if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l): path, line_no, error_type = re.match( "^(.*)\:(\d+)\: error:.*\[(.*)\]", l ).groups() if (path, line_no) in to_ignore: to_ignore[(path, line_no)].append(error_type) else: to_ignore[(path, line_no)] = [error_type] print(len(to_ignore)) for (error_path, line_no), error_types in to_ignore.items(): all_errors = ", ".join(error_types) full_path = f"{cwd}/{error_path}" try: with open(full_path, "r") as f: file_lines = f.readlines() except FileNotFoundError: continue file_lines[int(line_no) - 1] = ( file_lines[int(line_no) - 1][:-1] + f" # type: ignore[{all_errors}]\n" ) with open(full_path, "w") as f: f.write("".join(file_lines)) subprocess.run( "poetry run ruff format .; poetry run ruff --select I --fix .", cwd=cwd, shell=True, capture_output=True, text=True, ) if __name__ == "__main__": main() ```
37 lines
1.7 KiB
Python
37 lines
1.7 KiB
Python
"""Test SparkLLM Text Embedding."""
|
||
|
||
from langchain_community.embeddings.sparkllm import SparkLLMTextEmbeddings
|
||
|
||
|
||
def test_baichuan_embedding_documents() -> None:
|
||
"""Test SparkLLM Text Embedding for documents."""
|
||
documents = [
|
||
"iFLYTEK is a well-known intelligent speech and artificial intelligence "
|
||
"publicly listed company in the Asia-Pacific Region. Since its establishment,"
|
||
"the company is devoted to cornerstone technological research "
|
||
"in speech and languages, natural language understanding, machine learning,"
|
||
"machine reasoning, adaptive learning, "
|
||
"and has maintained the world-leading position in those "
|
||
"domains. The company actively promotes the development of A.I. "
|
||
"products and their sector-based "
|
||
"applications, with visions of enabling machines to listen and speak, "
|
||
"understand and think, "
|
||
"creating a better world with artificial intelligence."
|
||
]
|
||
embedding = SparkLLMTextEmbeddings() # type: ignore[call-arg]
|
||
output = embedding.embed_documents(documents)
|
||
assert len(output) == 1 # type: ignore[arg-type]
|
||
assert len(output[0]) == 2560 # type: ignore[index]
|
||
|
||
|
||
def test_baichuan_embedding_query() -> None:
|
||
"""Test SparkLLM Text Embedding for query."""
|
||
document = (
|
||
"iFLYTEK Open Platform was launched in 2010 by iFLYTEK as China’s "
|
||
"first Artificial Intelligence open platform for Mobile Internet "
|
||
"and intelligent hardware developers"
|
||
)
|
||
embedding = SparkLLMTextEmbeddings() # type: ignore[call-arg]
|
||
output = embedding.embed_query(document)
|
||
assert len(output) == 2560 # type: ignore[arg-type]
|