langchain/libs/community/tests/integration_tests/embeddings/test_vertexai.py
Bagatur a0c2281540
infra: update mypy 1.10, ruff 0.5 (#23721)
```python
"""python scripts/update_mypy_ruff.py"""
import glob
import tomllib
from pathlib import Path

import toml
import subprocess
import re

ROOT_DIR = Path(__file__).parents[1]


def main():
    for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True):
        print(path)
        with open(path, "rb") as f:
            pyproject = tomllib.load(f)
        try:
            pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = (
                "^1.10"
            )
            pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = (
                "^0.5"
            )
        except KeyError:
            continue
        with open(path, "w") as f:
            toml.dump(pyproject, f)
        cwd = "/".join(path.split("/")[:-1])
        completed = subprocess.run(
            "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color",
            cwd=cwd,
            shell=True,
            capture_output=True,
            text=True,
        )
        logs = completed.stdout.split("\n")

        to_ignore = {}
        for l in logs:
            if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l):
                path, line_no, error_type = re.match(
                    "^(.*)\:(\d+)\: error:.*\[(.*)\]", l
                ).groups()
                if (path, line_no) in to_ignore:
                    to_ignore[(path, line_no)].append(error_type)
                else:
                    to_ignore[(path, line_no)] = [error_type]
        print(len(to_ignore))
        for (error_path, line_no), error_types in to_ignore.items():
            all_errors = ", ".join(error_types)
            full_path = f"{cwd}/{error_path}"
            try:
                with open(full_path, "r") as f:
                    file_lines = f.readlines()
            except FileNotFoundError:
                continue
            file_lines[int(line_no) - 1] = (
                file_lines[int(line_no) - 1][:-1] + f"  # type: ignore[{all_errors}]\n"
            )
            with open(full_path, "w") as f:
                f.write("".join(file_lines))

        subprocess.run(
            "poetry run ruff format .; poetry run ruff --select I --fix .",
            cwd=cwd,
            shell=True,
            capture_output=True,
            text=True,
        )


if __name__ == "__main__":
    main()

```
2024-07-03 10:33:27 -07:00

69 lines
2.1 KiB
Python

"""Test Vertex AI API wrapper.
In order to run this test, you need to install VertexAI SDK
pip install google-cloud-aiplatform>=1.35.0
Your end-user credentials would be used to make the calls (make sure you've run
`gcloud auth login` first).
"""
import pytest
from langchain_community.embeddings import VertexAIEmbeddings
def test_embedding_documents() -> None:
documents = ["foo bar"]
model = VertexAIEmbeddings()
output = model.embed_documents(documents)
assert len(output) == 1
assert len(output[0]) == 768
assert model.model_name == model.client._model_id
assert model.model_name == "textembedding-gecko@001"
def test_embedding_query() -> None:
document = "foo bar"
model = VertexAIEmbeddings()
output = model.embed_query(document)
assert len(output) == 768
def test_large_batches() -> None:
documents = ["foo bar" for _ in range(0, 251)]
model_uscentral1 = VertexAIEmbeddings(location="us-central1")
model_asianortheast1 = VertexAIEmbeddings(location="asia-northeast1")
model_uscentral1.embed_documents(documents)
model_asianortheast1.embed_documents(documents)
assert model_uscentral1.instance["batch_size"] >= 250
assert model_asianortheast1.instance["batch_size"] < 50
def test_paginated_texts() -> None:
documents = [
"foo bar",
"foo baz",
"bar foo",
"baz foo",
"bar bar",
"foo foo",
"baz baz",
"baz bar",
]
model = VertexAIEmbeddings()
output = model.embed_documents(documents)
assert len(output) == 8
assert len(output[0]) == 768
assert model.model_name == model.client._model_id
def test_warning(caplog: pytest.LogCaptureFixture) -> None:
_ = VertexAIEmbeddings()
assert len(caplog.records) == 1
record = caplog.records[0]
assert record.levelname == "WARNING"
expected_message = (
"Model_name will become a required arg for VertexAIEmbeddings starting from "
"Feb-01-2024. Currently the default is set to textembedding-gecko@001"
)
assert record.message == expected_message