mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-01 21:35:34 +00:00
```python """python scripts/update_mypy_ruff.py""" import glob import tomllib from pathlib import Path import toml import subprocess import re ROOT_DIR = Path(__file__).parents[1] def main(): for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True): print(path) with open(path, "rb") as f: pyproject = tomllib.load(f) try: pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = ( "^1.10" ) pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = ( "^0.5" ) except KeyError: continue with open(path, "w") as f: toml.dump(pyproject, f) cwd = "/".join(path.split("/")[:-1]) completed = subprocess.run( "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color", cwd=cwd, shell=True, capture_output=True, text=True, ) logs = completed.stdout.split("\n") to_ignore = {} for l in logs: if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l): path, line_no, error_type = re.match( "^(.*)\:(\d+)\: error:.*\[(.*)\]", l ).groups() if (path, line_no) in to_ignore: to_ignore[(path, line_no)].append(error_type) else: to_ignore[(path, line_no)] = [error_type] print(len(to_ignore)) for (error_path, line_no), error_types in to_ignore.items(): all_errors = ", ".join(error_types) full_path = f"{cwd}/{error_path}" try: with open(full_path, "r") as f: file_lines = f.readlines() except FileNotFoundError: continue file_lines[int(line_no) - 1] = ( file_lines[int(line_no) - 1][:-1] + f" # type: ignore[{all_errors}]\n" ) with open(full_path, "w") as f: f.write("".join(file_lines)) subprocess.run( "poetry run ruff format .; poetry run ruff --select I --fix .", cwd=cwd, shell=True, capture_output=True, text=True, ) if __name__ == "__main__": main() ```
69 lines
2.1 KiB
Python
69 lines
2.1 KiB
Python
"""Test Vertex AI API wrapper.
|
|
In order to run this test, you need to install VertexAI SDK
|
|
pip install google-cloud-aiplatform>=1.35.0
|
|
|
|
Your end-user credentials would be used to make the calls (make sure you've run
|
|
`gcloud auth login` first).
|
|
"""
|
|
|
|
import pytest
|
|
|
|
from langchain_community.embeddings import VertexAIEmbeddings
|
|
|
|
|
|
def test_embedding_documents() -> None:
|
|
documents = ["foo bar"]
|
|
model = VertexAIEmbeddings()
|
|
output = model.embed_documents(documents)
|
|
assert len(output) == 1
|
|
assert len(output[0]) == 768
|
|
assert model.model_name == model.client._model_id
|
|
assert model.model_name == "textembedding-gecko@001"
|
|
|
|
|
|
def test_embedding_query() -> None:
|
|
document = "foo bar"
|
|
model = VertexAIEmbeddings()
|
|
output = model.embed_query(document)
|
|
assert len(output) == 768
|
|
|
|
|
|
def test_large_batches() -> None:
|
|
documents = ["foo bar" for _ in range(0, 251)]
|
|
model_uscentral1 = VertexAIEmbeddings(location="us-central1")
|
|
model_asianortheast1 = VertexAIEmbeddings(location="asia-northeast1")
|
|
model_uscentral1.embed_documents(documents)
|
|
model_asianortheast1.embed_documents(documents)
|
|
assert model_uscentral1.instance["batch_size"] >= 250
|
|
assert model_asianortheast1.instance["batch_size"] < 50
|
|
|
|
|
|
def test_paginated_texts() -> None:
|
|
documents = [
|
|
"foo bar",
|
|
"foo baz",
|
|
"bar foo",
|
|
"baz foo",
|
|
"bar bar",
|
|
"foo foo",
|
|
"baz baz",
|
|
"baz bar",
|
|
]
|
|
model = VertexAIEmbeddings()
|
|
output = model.embed_documents(documents)
|
|
assert len(output) == 8
|
|
assert len(output[0]) == 768
|
|
assert model.model_name == model.client._model_id
|
|
|
|
|
|
def test_warning(caplog: pytest.LogCaptureFixture) -> None:
|
|
_ = VertexAIEmbeddings()
|
|
assert len(caplog.records) == 1
|
|
record = caplog.records[0]
|
|
assert record.levelname == "WARNING"
|
|
expected_message = (
|
|
"Model_name will become a required arg for VertexAIEmbeddings starting from "
|
|
"Feb-01-2024. Currently the default is set to textembedding-gecko@001"
|
|
)
|
|
assert record.message == expected_message
|