mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-04 06:37:58 +00:00
```python """python scripts/update_mypy_ruff.py""" import glob import tomllib from pathlib import Path import toml import subprocess import re ROOT_DIR = Path(__file__).parents[1] def main(): for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True): print(path) with open(path, "rb") as f: pyproject = tomllib.load(f) try: pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = ( "^1.10" ) pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = ( "^0.5" ) except KeyError: continue with open(path, "w") as f: toml.dump(pyproject, f) cwd = "/".join(path.split("/")[:-1]) completed = subprocess.run( "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color", cwd=cwd, shell=True, capture_output=True, text=True, ) logs = completed.stdout.split("\n") to_ignore = {} for l in logs: if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l): path, line_no, error_type = re.match( "^(.*)\:(\d+)\: error:.*\[(.*)\]", l ).groups() if (path, line_no) in to_ignore: to_ignore[(path, line_no)].append(error_type) else: to_ignore[(path, line_no)] = [error_type] print(len(to_ignore)) for (error_path, line_no), error_types in to_ignore.items(): all_errors = ", ".join(error_types) full_path = f"{cwd}/{error_path}" try: with open(full_path, "r") as f: file_lines = f.readlines() except FileNotFoundError: continue file_lines[int(line_no) - 1] = ( file_lines[int(line_no) - 1][:-1] + f" # type: ignore[{all_errors}]\n" ) with open(full_path, "w") as f: f.write("".join(file_lines)) subprocess.run( "poetry run ruff format .; poetry run ruff --select I --fix .", cwd=cwd, shell=True, capture_output=True, text=True, ) if __name__ == "__main__": main() ```
265 lines
7.8 KiB
Python
265 lines
7.8 KiB
Python
"""Test OpenAI API wrapper."""
|
|
|
|
from pathlib import Path
|
|
from typing import Generator
|
|
|
|
import pytest
|
|
from langchain_core.callbacks import CallbackManager
|
|
from langchain_core.outputs import LLMResult
|
|
|
|
from langchain_community.chat_models.openai import ChatOpenAI
|
|
from langchain_community.llms.loading import load_llm
|
|
from langchain_community.llms.openai import OpenAI
|
|
from tests.unit_tests.callbacks.fake_callback_handler import (
|
|
FakeCallbackHandler,
|
|
)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
def test_openai_call() -> None:
|
|
"""Test valid call to openai."""
|
|
llm = OpenAI()
|
|
output = llm.invoke("Say something nice:")
|
|
assert isinstance(output, str)
|
|
|
|
|
|
def test_openai_llm_output_contains_model_name() -> None:
|
|
"""Test llm_output contains model_name."""
|
|
llm = OpenAI(max_tokens=10)
|
|
llm_result = llm.generate(["Hello, how are you?"])
|
|
assert llm_result.llm_output is not None
|
|
assert llm_result.llm_output["model_name"] == llm.model_name
|
|
|
|
|
|
def test_openai_stop_valid() -> None:
|
|
"""Test openai stop logic on valid configuration."""
|
|
query = "write an ordered list of five items"
|
|
first_llm = OpenAI(stop="3", temperature=0) # type: ignore[call-arg]
|
|
first_output = first_llm.invoke(query)
|
|
second_llm = OpenAI(temperature=0)
|
|
second_output = second_llm.invoke(query, stop=["3"])
|
|
# Because it stops on new lines, shouldn't return anything
|
|
assert first_output == second_output
|
|
|
|
|
|
def test_openai_stop_error() -> None:
|
|
"""Test openai stop logic on bad configuration."""
|
|
llm = OpenAI(stop="3", temperature=0) # type: ignore[call-arg]
|
|
with pytest.raises(ValueError):
|
|
llm.invoke("write an ordered list of five items", stop=["\n"])
|
|
|
|
|
|
def test_saving_loading_llm(tmp_path: Path) -> None:
|
|
"""Test saving/loading an OpenAI LLM."""
|
|
llm = OpenAI(max_tokens=10)
|
|
llm.save(file_path=tmp_path / "openai.yaml")
|
|
loaded_llm = load_llm(tmp_path / "openai.yaml")
|
|
assert loaded_llm == llm
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
def test_openai_streaming() -> None:
|
|
"""Test streaming tokens from OpenAI."""
|
|
llm = OpenAI(max_tokens=10)
|
|
generator = llm.stream("I'm Pickle Rick")
|
|
|
|
assert isinstance(generator, Generator)
|
|
|
|
for token in generator:
|
|
assert isinstance(token, str)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
async def test_openai_astream() -> None:
|
|
"""Test streaming tokens from OpenAI."""
|
|
llm = OpenAI(max_tokens=10)
|
|
|
|
async for token in llm.astream("I'm Pickle Rick"):
|
|
assert isinstance(token, str)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
async def test_openai_abatch() -> None:
|
|
"""Test streaming tokens from OpenAI."""
|
|
llm = OpenAI(max_tokens=10)
|
|
|
|
result = await llm.abatch(["I'm Pickle Rick", "I'm not Pickle Rick"])
|
|
for token in result:
|
|
assert isinstance(token, str)
|
|
|
|
|
|
async def test_openai_abatch_tags() -> None:
|
|
"""Test streaming tokens from OpenAI."""
|
|
llm = OpenAI(max_tokens=10)
|
|
|
|
result = await llm.abatch(
|
|
["I'm Pickle Rick", "I'm not Pickle Rick"], config={"tags": ["foo"]}
|
|
)
|
|
for token in result:
|
|
assert isinstance(token, str)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
def test_openai_batch() -> None:
|
|
"""Test streaming tokens from OpenAI."""
|
|
llm = OpenAI(max_tokens=10)
|
|
|
|
result = llm.batch(["I'm Pickle Rick", "I'm not Pickle Rick"])
|
|
for token in result:
|
|
assert isinstance(token, str)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
async def test_openai_ainvoke() -> None:
|
|
"""Test streaming tokens from OpenAI."""
|
|
llm = OpenAI(max_tokens=10)
|
|
|
|
result = await llm.ainvoke("I'm Pickle Rick", config={"tags": ["foo"]})
|
|
assert isinstance(result, str)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
def test_openai_invoke() -> None:
|
|
"""Test streaming tokens from OpenAI."""
|
|
llm = OpenAI(max_tokens=10)
|
|
|
|
result = llm.invoke("I'm Pickle Rick", config=dict(tags=["foo"]))
|
|
assert isinstance(result, str)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
def test_openai_multiple_prompts() -> None:
|
|
"""Test completion with multiple prompts."""
|
|
llm = OpenAI(max_tokens=10)
|
|
output = llm.generate(["I'm Pickle Rick", "I'm Pickle Rick"])
|
|
assert isinstance(output, LLMResult)
|
|
assert isinstance(output.generations, list)
|
|
assert len(output.generations) == 2
|
|
|
|
|
|
def test_openai_streaming_best_of_error() -> None:
|
|
"""Test validation for streaming fails if best_of is not 1."""
|
|
with pytest.raises(ValueError):
|
|
OpenAI(best_of=2, streaming=True)
|
|
|
|
|
|
def test_openai_streaming_n_error() -> None:
|
|
"""Test validation for streaming fails if n is not 1."""
|
|
with pytest.raises(ValueError):
|
|
OpenAI(n=2, streaming=True)
|
|
|
|
|
|
def test_openai_streaming_multiple_prompts_error() -> None:
|
|
"""Test validation for streaming fails if multiple prompts are given."""
|
|
with pytest.raises(ValueError):
|
|
OpenAI(streaming=True).generate(["I'm Pickle Rick", "I'm Pickle Rick"])
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
def test_openai_streaming_call() -> None:
|
|
"""Test valid call to openai."""
|
|
llm = OpenAI(max_tokens=10, streaming=True)
|
|
output = llm.invoke("Say foo:")
|
|
assert isinstance(output, str)
|
|
|
|
|
|
def test_openai_streaming_callback() -> None:
|
|
"""Test that streaming correctly invokes on_llm_new_token callback."""
|
|
callback_handler = FakeCallbackHandler()
|
|
callback_manager = CallbackManager([callback_handler])
|
|
llm = OpenAI(
|
|
max_tokens=10,
|
|
streaming=True,
|
|
temperature=0,
|
|
callback_manager=callback_manager,
|
|
verbose=True,
|
|
)
|
|
llm.invoke("Write me a sentence with 100 words.")
|
|
assert callback_handler.llm_streams == 10
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
async def test_openai_async_generate() -> None:
|
|
"""Test async generation."""
|
|
llm = OpenAI(max_tokens=10)
|
|
output = await llm.agenerate(["Hello, how are you?"])
|
|
assert isinstance(output, LLMResult)
|
|
|
|
|
|
async def test_openai_async_streaming_callback() -> None:
|
|
"""Test that streaming correctly invokes on_llm_new_token callback."""
|
|
callback_handler = FakeCallbackHandler()
|
|
callback_manager = CallbackManager([callback_handler])
|
|
llm = OpenAI(
|
|
max_tokens=10,
|
|
streaming=True,
|
|
temperature=0,
|
|
callback_manager=callback_manager,
|
|
verbose=True,
|
|
)
|
|
result = await llm.agenerate(["Write me a sentence with 100 words."])
|
|
assert callback_handler.llm_streams == 10
|
|
assert isinstance(result, LLMResult)
|
|
|
|
|
|
def test_openai_modelname_to_contextsize_valid() -> None:
|
|
"""Test model name to context size on a valid model."""
|
|
assert OpenAI().modelname_to_contextsize("davinci") == 2049
|
|
|
|
|
|
def test_openai_modelname_to_contextsize_invalid() -> None:
|
|
"""Test model name to context size on an invalid model."""
|
|
with pytest.raises(ValueError):
|
|
OpenAI().modelname_to_contextsize("foobar")
|
|
|
|
|
|
_EXPECTED_NUM_TOKENS = {
|
|
"ada": 17,
|
|
"babbage": 17,
|
|
"curie": 17,
|
|
"davinci": 17,
|
|
"gpt-4": 12,
|
|
"gpt-4-32k": 12,
|
|
"gpt-3.5-turbo": 12,
|
|
}
|
|
|
|
_MODELS = models = [
|
|
"ada",
|
|
"babbage",
|
|
"curie",
|
|
"davinci",
|
|
]
|
|
_CHAT_MODELS = [
|
|
"gpt-4",
|
|
"gpt-4-32k",
|
|
"gpt-3.5-turbo",
|
|
]
|
|
|
|
|
|
@pytest.mark.parametrize("model", _MODELS)
|
|
def test_openai_get_num_tokens(model: str) -> None:
|
|
"""Test get_tokens."""
|
|
llm = OpenAI(model=model)
|
|
assert llm.get_num_tokens("表情符号是\n🦜🔗") == _EXPECTED_NUM_TOKENS[model]
|
|
|
|
|
|
@pytest.mark.parametrize("model", _CHAT_MODELS)
|
|
def test_chat_openai_get_num_tokens(model: str) -> None:
|
|
"""Test get_tokens."""
|
|
llm = ChatOpenAI(model=model)
|
|
assert llm.get_num_tokens("表情符号是\n🦜🔗") == _EXPECTED_NUM_TOKENS[model]
|
|
|
|
|
|
@pytest.fixture
|
|
def mock_completion() -> dict:
|
|
return {
|
|
"id": "cmpl-3evkmQda5Hu7fcZavknQda3SQ",
|
|
"object": "text_completion",
|
|
"created": 1689989000,
|
|
"model": "gpt-3.5-turbo-instruct",
|
|
"choices": [
|
|
{"text": "Bar Baz", "index": 0, "logprobs": None, "finish_reason": "length"}
|
|
],
|
|
"usage": {"prompt_tokens": 1, "completion_tokens": 2, "total_tokens": 3},
|
|
}
|