mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-03 06:08:18 +00:00
**Description:** - Fix bug in Replicate LLM class, where it was looking for parameter names in a place where they no longer exist in pydantic 2, resulting in the "Field required" validation error described in the issue. - Fix Replicate LLM integration tests to: - Use active models on Replicate. - Use the correct model parameter `max_new_tokens` as shown in the [Replicate docs](https://replicate.com/docs/guides/language-models/how-to-use#minimum-and-maximum-new-tokens). - Use callbacks instead of deprecated callback_manager. **Issue:** #26937 **Dependencies:** n/a **Twitter handle:** n/a --------- Signed-off-by: Fayvor Love <fayvor@gmail.com> Co-authored-by: Chester Curme <chester.curme@gmail.com>
50 lines
1.7 KiB
Python
50 lines
1.7 KiB
Python
"""Test Replicate API wrapper."""
|
|
|
|
from langchain_community.llms.replicate import Replicate
|
|
from tests.unit_tests.callbacks.fake_callback_handler import FakeCallbackHandler
|
|
|
|
TEST_MODEL_HELLO = (
|
|
"replicate/hello-world:"
|
|
+ "5c7d5dc6dd8bf75c1acaa8565735e7986bc5b66206b55cca93cb72c9bf15ccaa"
|
|
)
|
|
TEST_MODEL_LANG = "meta/meta-llama-3-8b-instruct"
|
|
|
|
|
|
def test_replicate_call() -> None:
|
|
"""Test simple non-streaming call to Replicate."""
|
|
llm = Replicate(model=TEST_MODEL_HELLO)
|
|
output = llm.invoke("What is LangChain")
|
|
assert output
|
|
assert isinstance(output, str)
|
|
|
|
|
|
def test_replicate_streaming_call() -> None:
|
|
"""Test streaming call to Replicate."""
|
|
callback_handler = FakeCallbackHandler()
|
|
|
|
llm = Replicate(
|
|
streaming=True, callbacks=[callback_handler], model=TEST_MODEL_HELLO
|
|
)
|
|
output = llm.invoke("What is LangChain")
|
|
assert output
|
|
assert isinstance(output, str)
|
|
|
|
|
|
def test_replicate_model_kwargs() -> None:
|
|
"""Test simple non-streaming call to Replicate."""
|
|
llm = Replicate( # type: ignore[call-arg]
|
|
model=TEST_MODEL_LANG, model_kwargs={"max_new_tokens": 10, "temperature": 0.01}
|
|
)
|
|
long_output = llm.invoke("What is LangChain")
|
|
llm = Replicate( # type: ignore[call-arg]
|
|
model=TEST_MODEL_LANG, model_kwargs={"max_new_tokens": 5, "temperature": 0.01}
|
|
)
|
|
short_output = llm.invoke("What is LangChain")
|
|
assert len(short_output) < len(long_output)
|
|
assert llm.model_kwargs == {"max_new_tokens": 5, "temperature": 0.01}
|
|
|
|
|
|
def test_replicate_input() -> None:
|
|
llm = Replicate(model=TEST_MODEL_LANG, input={"max_new_tokens": 10})
|
|
assert llm.model_kwargs == {"max_new_tokens": 10}
|