mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-01 21:35:34 +00:00
0.2rc migrations - [x] Move memory - [x] Move remaining retrievers - [x] graph_qa chains - [x] some dependency from evaluation code potentially on math utils - [x] Move openapi chain from `langchain.chains.api.openapi` to `langchain_community.chains.openapi` - [x] Migrate `langchain.chains.ernie_functions` to `langchain_community.chains.ernie_functions` - [x] migrate `langchain/chains/llm_requests.py` to `langchain_community.chains.llm_requests` - [x] Moving `langchain_community.cross_enoders.base:BaseCrossEncoder` -> `langchain_community.retrievers.document_compressors.cross_encoder:BaseCrossEncoder` (namespace not ideal, but it needs to be moved to `langchain` to avoid circular deps) - [x] unit tests langchain -- add pytest.mark.community to some unit tests that will stay in langchain - [x] unit tests community -- move unit tests that depend on community to community - [x] mv integration tests that depend on community to community - [x] mypy checks Other todo - [x] Make deprecation warnings not noisy (need to use warn deprecated and check that things are implemented properly) - [x] Update deprecation messages with timeline for code removal (likely we actually won't be removing things until 0.4 release) -- will give people more time to transition their code. - [ ] Add information to deprecation warning to show users how to migrate their code base using langchain-cli - [ ] Remove any unnecessary requirements in langchain (e.g., is SQLALchemy required?) --------- Co-authored-by: Erick Friis <erick@langchain.dev>
106 lines
3.4 KiB
Python
106 lines
3.4 KiB
Python
"""Test LLM Math functionality."""
|
|
|
|
import json
|
|
from typing import Any
|
|
|
|
import pytest
|
|
from langchain.chains.api.base import APIChain
|
|
from langchain.chains.api.prompt import API_RESPONSE_PROMPT, API_URL_PROMPT
|
|
from langchain.chains.llm import LLMChain
|
|
|
|
from langchain_community.utilities.requests import TextRequestsWrapper
|
|
from tests.unit_tests.llms.fake_llm import FakeLLM
|
|
|
|
|
|
class FakeRequestsChain(TextRequestsWrapper):
|
|
"""Fake requests chain just for testing purposes."""
|
|
|
|
output: str
|
|
|
|
def get(self, url: str, **kwargs: Any) -> str:
|
|
"""Just return the specified output."""
|
|
return self.output
|
|
|
|
|
|
def get_test_api_data() -> dict:
|
|
"""Fake api data to use for testing."""
|
|
api_docs = """
|
|
This API endpoint will search the notes for a user.
|
|
|
|
Endpoint: https://thisapidoesntexist.com
|
|
GET /api/notes
|
|
|
|
Query parameters:
|
|
q | string | The search term for notes
|
|
"""
|
|
return {
|
|
"api_docs": api_docs,
|
|
"question": "Search for notes containing langchain",
|
|
"api_url": "https://thisapidoesntexist.com/api/notes?q=langchain",
|
|
"api_response": json.dumps(
|
|
{
|
|
"success": True,
|
|
"results": [{"id": 1, "content": "Langchain is awesome!"}],
|
|
}
|
|
),
|
|
"api_summary": "There is 1 note about langchain.",
|
|
}
|
|
|
|
|
|
def get_api_chain(**kwargs: Any) -> APIChain:
|
|
"""Fake LLM API chain for testing."""
|
|
data = get_test_api_data()
|
|
test_api_docs = data["api_docs"]
|
|
test_question = data["question"]
|
|
test_url = data["api_url"]
|
|
test_api_response = data["api_response"]
|
|
test_api_summary = data["api_summary"]
|
|
|
|
api_url_query_prompt = API_URL_PROMPT.format(
|
|
api_docs=test_api_docs, question=test_question
|
|
)
|
|
api_response_prompt = API_RESPONSE_PROMPT.format(
|
|
api_docs=test_api_docs,
|
|
question=test_question,
|
|
api_url=test_url,
|
|
api_response=test_api_response,
|
|
)
|
|
queries = {api_url_query_prompt: test_url, api_response_prompt: test_api_summary}
|
|
fake_llm = FakeLLM(queries=queries)
|
|
api_request_chain = LLMChain(llm=fake_llm, prompt=API_URL_PROMPT)
|
|
api_answer_chain = LLMChain(llm=fake_llm, prompt=API_RESPONSE_PROMPT)
|
|
requests_wrapper = FakeRequestsChain(output=test_api_response)
|
|
return APIChain(
|
|
api_request_chain=api_request_chain,
|
|
api_answer_chain=api_answer_chain,
|
|
requests_wrapper=requests_wrapper,
|
|
api_docs=test_api_docs,
|
|
**kwargs,
|
|
)
|
|
|
|
|
|
def test_api_question() -> None:
|
|
"""Test simple question that needs API access."""
|
|
with pytest.raises(ValueError):
|
|
get_api_chain()
|
|
with pytest.raises(ValueError):
|
|
get_api_chain(limit_to_domains=tuple())
|
|
|
|
# All domains allowed (not advised)
|
|
api_chain = get_api_chain(limit_to_domains=None)
|
|
data = get_test_api_data()
|
|
assert api_chain.run(data["question"]) == data["api_summary"]
|
|
|
|
# Use a domain that's allowed
|
|
api_chain = get_api_chain(
|
|
limit_to_domains=["https://thisapidoesntexist.com/api/notes?q=langchain"]
|
|
)
|
|
# Attempts to make a request against a domain that's not allowed
|
|
assert api_chain.run(data["question"]) == data["api_summary"]
|
|
|
|
# Use domains that are not valid
|
|
api_chain = get_api_chain(limit_to_domains=["h", "*"])
|
|
with pytest.raises(ValueError):
|
|
# Attempts to make a request against a domain that's not allowed
|
|
assert api_chain.run(data["question"]) == data["api_summary"]
|