langchain/libs/community/tests/unit_tests/retrievers/test_bedrock.py
Erick Friis c2a3021bb0
multiple: pydantic 2 compatibility, v0.3 (#26443)
Signed-off-by: ChengZi <chen.zhang@zilliz.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Dan O'Donovan <dan.odonovan@gmail.com>
Co-authored-by: Tom Daniel Grande <tomdgrande@gmail.com>
Co-authored-by: Grande <Tom.Daniel.Grande@statsbygg.no>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: ccurme <chester.curme@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Tomaz Bratanic <bratanic.tomaz@gmail.com>
Co-authored-by: ZhangShenao <15201440436@163.com>
Co-authored-by: Friso H. Kingma <fhkingma@gmail.com>
Co-authored-by: ChengZi <chen.zhang@zilliz.com>
Co-authored-by: Nuno Campos <nuno@langchain.dev>
Co-authored-by: Morgante Pell <morgantep@google.com>
2024-09-13 14:38:45 -07:00

76 lines
2.3 KiB
Python

from typing import List
from unittest.mock import MagicMock
import pytest
from langchain_core.documents import Document
from langchain_community.retrievers import AmazonKnowledgeBasesRetriever
@pytest.fixture
def mock_client() -> MagicMock:
return MagicMock()
@pytest.fixture
def mock_retriever_config() -> dict:
return {"vectorSearchConfiguration": {"numberOfResults": 4}}
@pytest.fixture
def amazon_retriever(
mock_client: MagicMock, mock_retriever_config: dict
) -> AmazonKnowledgeBasesRetriever:
return AmazonKnowledgeBasesRetriever(
knowledge_base_id="test_kb_id",
retrieval_config=mock_retriever_config, # type: ignore[arg-type]
client=mock_client,
)
def test_create_client() -> None:
# Import error if boto3 is not installed
# Value error if credentials are not supplied.
with pytest.raises((ImportError, ValueError)):
AmazonKnowledgeBasesRetriever() # type: ignore
def test_standard_params(amazon_retriever: AmazonKnowledgeBasesRetriever) -> None:
ls_params = amazon_retriever._get_ls_params()
assert ls_params == {"ls_retriever_name": "amazonknowledgebases"}
def test_get_relevant_documents(
amazon_retriever: AmazonKnowledgeBasesRetriever, mock_client: MagicMock
) -> None:
query: str = "test query"
mock_client.retrieve.return_value = {
"retrievalResults": [
{"content": {"text": "result1"}, "metadata": {"key": "value1"}},
{
"content": {"text": "result2"},
"metadata": {"key": "value2"},
"score": 1,
"location": "testLocation",
},
{"content": {"text": "result3"}},
]
}
documents: List[Document] = amazon_retriever._get_relevant_documents(
query,
run_manager=None, # type: ignore
)
assert len(documents) == 3
assert isinstance(documents[0], Document)
assert documents[0].page_content == "result1"
assert documents[0].metadata == {"score": 0, "source_metadata": {"key": "value1"}}
assert documents[1].page_content == "result2"
assert documents[1].metadata == {
"score": 1,
"source_metadata": {"key": "value2"},
"location": "testLocation",
}
assert documents[2].page_content == "result3"
assert documents[2].metadata == {"score": 0}