langchain/libs/community/tests/unit_tests/tools/test_signatures.py
Bagatur 5fd1e67808
core[minor], integrations...[patch]: Support ToolCall as Tool input and ToolMessage as Tool output (#24038)
Changes:
- ToolCall, InvalidToolCall and ToolCallChunk can all accept a "type"
parameter now
- LLM integration packages add "type" to all the above
- Tool supports ToolCall inputs that have "type" specified
- Tool outputs ToolMessage when a ToolCall is passed as input
- Tools can separately specify ToolMessage.content and
ToolMessage.raw_output
- Tools emit events for validation errors (using on_tool_error and
on_tool_end)

Example:
```python
@tool("structured_api", response_format="content_and_raw_output")
def _mock_structured_tool_with_raw_output(
    arg1: int, arg2: bool, arg3: Optional[dict] = None
) -> Tuple[str, dict]:
    """A Structured Tool"""
    return f"{arg1} {arg2}", {"arg1": arg1, "arg2": arg2, "arg3": arg3}


def test_tool_call_input_tool_message_with_raw_output() -> None:
    tool_call: Dict = {
        "name": "structured_api",
        "args": {"arg1": 1, "arg2": True, "arg3": {"img": "base64string..."}},
        "id": "123",
        "type": "tool_call",
    }
    expected = ToolMessage("1 True", raw_output=tool_call["args"], tool_call_id="123")
    tool = _mock_structured_tool_with_raw_output
    actual = tool.invoke(tool_call)
    assert actual == expected

    tool_call.pop("type")
    with pytest.raises(ValidationError):
        tool.invoke(tool_call)

    actual_content = tool.invoke(tool_call["args"])
    assert actual_content == expected.content
```

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-11 14:54:02 -07:00

56 lines
2.0 KiB
Python

"""Test base tool child implementations."""
import inspect
import re
from typing import List, Type
import pytest
from langchain_core.tools import BaseTool
from langchain_community.tools.amadeus.base import AmadeusBaseTool
from langchain_community.tools.gmail.base import GmailBaseTool
from langchain_community.tools.office365.base import O365BaseTool
from langchain_community.tools.playwright.base import BaseBrowserTool
from langchain_community.tools.slack.base import SlackBaseTool
def get_non_abstract_subclasses(cls: Type[BaseTool]) -> List[Type[BaseTool]]:
to_skip = {
AmadeusBaseTool,
BaseBrowserTool,
GmailBaseTool,
O365BaseTool,
SlackBaseTool,
} # Abstract but not recognized
subclasses = []
for subclass in cls.__subclasses__():
if (
not getattr(subclass, "__abstract__", None)
and not subclass.__name__.startswith("_")
and subclass not in to_skip
):
subclasses.append(subclass)
sc = get_non_abstract_subclasses(subclass)
subclasses.extend(sc)
return subclasses
@pytest.mark.parametrize("cls", get_non_abstract_subclasses(BaseTool)) # type: ignore
def test_all_subclasses_accept_run_manager(cls: Type[BaseTool]) -> None:
"""Test that tools defined in this repo accept a run manager argument."""
# This wouldn't be necessary if the BaseTool had a strict API.
if cls._run is not BaseTool._run:
run_func = cls._run
params = inspect.signature(run_func).parameters
assert "run_manager" in params
pattern = re.compile(r"(?!Async)CallbackManagerForToolRun")
assert bool(re.search(pattern, str(params["run_manager"].annotation)))
assert params["run_manager"].default is None
if cls._arun is not BaseTool._arun:
run_func = cls._arun
params = inspect.signature(run_func).parameters
assert "run_manager" in params
assert "AsyncCallbackManagerForToolRun" in str(params["run_manager"].annotation)
assert params["run_manager"].default is None