langchain/libs/partners/qdrant/tests/integration_tests/common.py
Anush a653b209ba
qdrant: test new QdrantVectorStore (#24165)
## Description

This PR adds integration tests to follow up on #24164.

By default, the tests use an in-memory instance.

To run the full suite of tests, with both in-memory and Qdrant server:

```
$ docker run -p 6333:6333 qdrant/qdrant

$ make test

$ make integration_test
```

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-12 23:59:30 +00:00

86 lines
3.2 KiB
Python

from typing import List
import requests # type: ignore
from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_qdrant import SparseEmbeddings, SparseVector
def qdrant_running_locally() -> bool:
"""Check if Qdrant is running at http://localhost:6333."""
try:
response = requests.get("http://localhost:6333", timeout=10.0)
response_json = response.json()
return response_json.get("title") == "qdrant - vector search engine"
except (requests.exceptions.ConnectionError, requests.exceptions.Timeout):
return False
def assert_documents_equals(actual: List[Document], expected: List[Document]): # type: ignore[no-untyped-def]
assert len(actual) == len(expected)
for actual_doc, expected_doc in zip(actual, expected):
assert actual_doc.page_content == expected_doc.page_content
assert "_id" in actual_doc.metadata
assert "_collection_name" in actual_doc.metadata
actual_doc.metadata.pop("_id")
actual_doc.metadata.pop("_collection_name")
assert actual_doc.metadata == expected_doc.metadata
class ConsistentFakeEmbeddings(Embeddings):
"""Fake embeddings which remember all the texts seen so far to return consistent
vectors for the same texts."""
def __init__(self, dimensionality: int = 10) -> None:
self.known_texts: List[str] = []
self.dimensionality = dimensionality
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Return consistent embeddings for each text seen so far."""
out_vectors = []
for text in texts:
if text not in self.known_texts:
self.known_texts.append(text)
vector = [float(1.0)] * (self.dimensionality - 1) + [
float(self.known_texts.index(text))
]
out_vectors.append(vector)
return out_vectors
def embed_query(self, text: str) -> List[float]:
"""Return consistent embeddings for the text, if seen before, or a constant
one if the text is unknown."""
return self.embed_documents([text])[0]
class ConsistentFakeSparseEmbeddings(SparseEmbeddings):
"""Fake sparse embeddings which remembers all the texts seen so far "
"to return consistent vectors for the same texts."""
def __init__(self, dimensionality: int = 25) -> None:
self.known_texts: List[str] = []
self.dimensionality = 25
def embed_documents(self, texts: List[str]) -> List[SparseVector]:
"""Return consistent embeddings for each text seen so far."""
out_vectors = []
for text in texts:
if text not in self.known_texts:
self.known_texts.append(text)
index = self.known_texts.index(text)
indices = [i + index for i in range(self.dimensionality)]
values = [1.0] * (self.dimensionality - 1) + [float(index)]
out_vectors.append(SparseVector(indices=indices, values=values))
return out_vectors
def embed_query(self, text: str) -> SparseVector:
"""Return consistent embeddings for the text, "
"if seen before, or a constant one if the text is unknown."""
return self.embed_documents([text])[0]