mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-25 08:03:39 +00:00
## Description This PR adds integration tests to follow up on #24164. By default, the tests use an in-memory instance. To run the full suite of tests, with both in-memory and Qdrant server: ``` $ docker run -p 6333:6333 qdrant/qdrant $ make test $ make integration_test ``` --------- Co-authored-by: Erick Friis <erick@langchain.dev>
86 lines
3.2 KiB
Python
86 lines
3.2 KiB
Python
from typing import List
|
|
|
|
import requests # type: ignore
|
|
from langchain_core.documents import Document
|
|
from langchain_core.embeddings import Embeddings
|
|
|
|
from langchain_qdrant import SparseEmbeddings, SparseVector
|
|
|
|
|
|
def qdrant_running_locally() -> bool:
|
|
"""Check if Qdrant is running at http://localhost:6333."""
|
|
|
|
try:
|
|
response = requests.get("http://localhost:6333", timeout=10.0)
|
|
response_json = response.json()
|
|
return response_json.get("title") == "qdrant - vector search engine"
|
|
except (requests.exceptions.ConnectionError, requests.exceptions.Timeout):
|
|
return False
|
|
|
|
|
|
def assert_documents_equals(actual: List[Document], expected: List[Document]): # type: ignore[no-untyped-def]
|
|
assert len(actual) == len(expected)
|
|
|
|
for actual_doc, expected_doc in zip(actual, expected):
|
|
assert actual_doc.page_content == expected_doc.page_content
|
|
|
|
assert "_id" in actual_doc.metadata
|
|
assert "_collection_name" in actual_doc.metadata
|
|
|
|
actual_doc.metadata.pop("_id")
|
|
actual_doc.metadata.pop("_collection_name")
|
|
|
|
assert actual_doc.metadata == expected_doc.metadata
|
|
|
|
|
|
class ConsistentFakeEmbeddings(Embeddings):
|
|
"""Fake embeddings which remember all the texts seen so far to return consistent
|
|
vectors for the same texts."""
|
|
|
|
def __init__(self, dimensionality: int = 10) -> None:
|
|
self.known_texts: List[str] = []
|
|
self.dimensionality = dimensionality
|
|
|
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
|
"""Return consistent embeddings for each text seen so far."""
|
|
out_vectors = []
|
|
for text in texts:
|
|
if text not in self.known_texts:
|
|
self.known_texts.append(text)
|
|
vector = [float(1.0)] * (self.dimensionality - 1) + [
|
|
float(self.known_texts.index(text))
|
|
]
|
|
out_vectors.append(vector)
|
|
return out_vectors
|
|
|
|
def embed_query(self, text: str) -> List[float]:
|
|
"""Return consistent embeddings for the text, if seen before, or a constant
|
|
one if the text is unknown."""
|
|
return self.embed_documents([text])[0]
|
|
|
|
|
|
class ConsistentFakeSparseEmbeddings(SparseEmbeddings):
|
|
"""Fake sparse embeddings which remembers all the texts seen so far "
|
|
"to return consistent vectors for the same texts."""
|
|
|
|
def __init__(self, dimensionality: int = 25) -> None:
|
|
self.known_texts: List[str] = []
|
|
self.dimensionality = 25
|
|
|
|
def embed_documents(self, texts: List[str]) -> List[SparseVector]:
|
|
"""Return consistent embeddings for each text seen so far."""
|
|
out_vectors = []
|
|
for text in texts:
|
|
if text not in self.known_texts:
|
|
self.known_texts.append(text)
|
|
index = self.known_texts.index(text)
|
|
indices = [i + index for i in range(self.dimensionality)]
|
|
values = [1.0] * (self.dimensionality - 1) + [float(index)]
|
|
out_vectors.append(SparseVector(indices=indices, values=values))
|
|
return out_vectors
|
|
|
|
def embed_query(self, text: str) -> SparseVector:
|
|
"""Return consistent embeddings for the text, "
|
|
"if seen before, or a constant one if the text is unknown."""
|
|
return self.embed_documents([text])[0]
|