mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-11 10:06:05 +00:00
- [x] **PR message**: - **Description:** Fixes warning messages raised due to missing `protected_namespaces` parameter in `ConfigDict`. - **Issue:** https://github.com/langchain-ai/langchain/issues/27609 - **Dependencies:** No dependencies - **Twitter handle:** @gawbul
76 lines
2.3 KiB
Python
76 lines
2.3 KiB
Python
from typing import Any, List
|
|
|
|
from langchain_core.embeddings import Embeddings
|
|
from pydantic import BaseModel, ConfigDict
|
|
|
|
DEFAULT_MODEL_URL = "https://tfhub.dev/google/universal-sentence-encoder-multilingual/3"
|
|
|
|
|
|
class TensorflowHubEmbeddings(BaseModel, Embeddings):
|
|
"""TensorflowHub embedding models.
|
|
|
|
To use, you should have the ``tensorflow_text`` python package installed.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.embeddings import TensorflowHubEmbeddings
|
|
url = "https://tfhub.dev/google/universal-sentence-encoder-multilingual/3"
|
|
tf = TensorflowHubEmbeddings(model_url=url)
|
|
"""
|
|
|
|
embed: Any = None #: :meta private:
|
|
model_url: str = DEFAULT_MODEL_URL
|
|
"""Model name to use."""
|
|
|
|
def __init__(self, **kwargs: Any):
|
|
"""Initialize the tensorflow_hub and tensorflow_text."""
|
|
super().__init__(**kwargs)
|
|
try:
|
|
import tensorflow_hub
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import tensorflow-hub python package. "
|
|
"Please install it with `pip install tensorflow-hub``."
|
|
)
|
|
try:
|
|
import tensorflow_text # noqa
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import tensorflow_text python package. "
|
|
"Please install it with `pip install tensorflow_text``."
|
|
)
|
|
|
|
self.embed = tensorflow_hub.load(self.model_url)
|
|
|
|
model_config = ConfigDict(
|
|
extra="forbid",
|
|
protected_namespaces=(),
|
|
)
|
|
|
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
|
"""Compute doc embeddings using a TensorflowHub embedding model.
|
|
|
|
Args:
|
|
texts: The list of texts to embed.
|
|
|
|
Returns:
|
|
List of embeddings, one for each text.
|
|
"""
|
|
texts = list(map(lambda x: x.replace("\n", " "), texts))
|
|
embeddings = self.embed(texts).numpy()
|
|
return embeddings.tolist()
|
|
|
|
def embed_query(self, text: str) -> List[float]:
|
|
"""Compute query embeddings using a TensorflowHub embedding model.
|
|
|
|
Args:
|
|
text: The text to embed.
|
|
|
|
Returns:
|
|
Embeddings for the text.
|
|
"""
|
|
text = text.replace("\n", " ")
|
|
embedding = self.embed([text]).numpy()[0]
|
|
return embedding.tolist()
|