mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-12 10:37:32 +00:00
198 lines
6.8 KiB
Python
198 lines
6.8 KiB
Python
from typing import Any, AsyncIterator, Dict, Iterator, List, Mapping, Optional
|
|
|
|
from langchain_core.callbacks import (
|
|
AsyncCallbackManagerForLLMRun,
|
|
CallbackManagerForLLMRun,
|
|
)
|
|
from langchain_core.language_models.llms import LLM
|
|
from langchain_core.outputs import GenerationChunk
|
|
from langchain_core.utils import get_from_dict_or_env
|
|
from pydantic import ConfigDict, Field, SecretStr, model_validator
|
|
|
|
|
|
class Writer(LLM):
|
|
"""Writer large language models.
|
|
|
|
To use, you should have the ``writer-sdk`` Python package installed, and the
|
|
environment variable ``WRITER_API_KEY`` set with your API key.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.llms import Writer as WriterLLM
|
|
from writerai import Writer, AsyncWriter
|
|
|
|
client = Writer()
|
|
async_client = AsyncWriter()
|
|
|
|
chat = WriterLLM(
|
|
client=client,
|
|
async_client=async_client
|
|
)
|
|
"""
|
|
|
|
client: Any = Field(default=None, exclude=True) #: :meta private:
|
|
async_client: Any = Field(default=None, exclude=True) #: :meta private:
|
|
|
|
api_key: Optional[SecretStr] = Field(default=None)
|
|
"""Writer API key."""
|
|
|
|
model_name: str = Field(default="palmyra-x-003-instruct", alias="model")
|
|
"""Model name to use."""
|
|
|
|
max_tokens: Optional[int] = None
|
|
"""The maximum number of tokens that the model can generate in the response."""
|
|
|
|
temperature: Optional[float] = 0.7
|
|
"""Controls the randomness of the model's outputs. Higher values lead to more
|
|
random outputs, while lower values make the model more deterministic."""
|
|
|
|
top_p: Optional[float] = None
|
|
"""Used to control the nucleus sampling, where only the most probable tokens
|
|
with a cumulative probability of top_p are considered for sampling, providing
|
|
a way to fine-tune the randomness of predictions."""
|
|
|
|
stop: Optional[List[str]] = None
|
|
"""Specifies stopping conditions for the model's output generation. This can
|
|
be an array of strings or a single string that the model will look for as a
|
|
signal to stop generating further tokens."""
|
|
|
|
best_of: Optional[int] = None
|
|
"""Specifies the number of completions to generate and return the best one.
|
|
Useful for generating multiple outputs and choosing the best based on some
|
|
criteria."""
|
|
|
|
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
|
"""Holds any model parameters valid for `create` call not explicitly specified."""
|
|
|
|
model_config = ConfigDict(populate_by_name=True)
|
|
|
|
@property
|
|
def _default_params(self) -> Mapping[str, Any]:
|
|
"""Get the default parameters for calling Writer API."""
|
|
return {
|
|
"max_tokens": self.max_tokens,
|
|
"temperature": self.temperature,
|
|
"top_p": self.top_p,
|
|
"stop": self.stop,
|
|
"best_of": self.best_of,
|
|
**self.model_kwargs,
|
|
}
|
|
|
|
@property
|
|
def _identifying_params(self) -> Mapping[str, Any]:
|
|
"""Get the identifying parameters."""
|
|
return {
|
|
"model": self.model_name,
|
|
**self._default_params,
|
|
}
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of llm."""
|
|
return "writer"
|
|
|
|
@model_validator(mode="before")
|
|
@classmethod
|
|
def validate_environment(cls, values: Dict) -> Any:
|
|
"""Validates that api key is passed and creates Writer clients."""
|
|
try:
|
|
from writerai import AsyncClient, Client
|
|
except ImportError as e:
|
|
raise ImportError(
|
|
"Could not import writerai python package. "
|
|
"Please install it with `pip install writerai`."
|
|
) from e
|
|
|
|
if not values.get("client"):
|
|
values.update(
|
|
{
|
|
"client": Client(
|
|
api_key=get_from_dict_or_env(
|
|
values, "api_key", "WRITER_API_KEY"
|
|
)
|
|
)
|
|
}
|
|
)
|
|
|
|
if not values.get("async_client"):
|
|
values.update(
|
|
{
|
|
"async_client": AsyncClient(
|
|
api_key=get_from_dict_or_env(
|
|
values, "api_key", "WRITER_API_KEY"
|
|
)
|
|
)
|
|
}
|
|
)
|
|
|
|
if not (
|
|
type(values.get("client")) is Client
|
|
and type(values.get("async_client")) is AsyncClient
|
|
):
|
|
raise ValueError(
|
|
"'client' attribute must be with type 'Client' and "
|
|
"'async_client' must be with type 'AsyncClient' from 'writerai' package"
|
|
)
|
|
|
|
return values
|
|
|
|
def _call(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> str:
|
|
params = {**self._identifying_params, **kwargs}
|
|
if stop is not None:
|
|
params.update({"stop": stop})
|
|
text = self.client.completions.create(prompt=prompt, **params).choices[0].text
|
|
return text
|
|
|
|
async def _acall(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[list[str]] = None,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> str:
|
|
params = {**self._identifying_params, **kwargs}
|
|
if stop is not None:
|
|
params.update({"stop": stop})
|
|
response = await self.async_client.completions.create(prompt=prompt, **params)
|
|
text = response.choices[0].text
|
|
return text
|
|
|
|
def _stream(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[list[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> Iterator[GenerationChunk]:
|
|
params = {**self._identifying_params, **kwargs, "stream": True}
|
|
if stop is not None:
|
|
params.update({"stop": stop})
|
|
response = self.client.completions.create(prompt=prompt, **params)
|
|
for chunk in response:
|
|
if run_manager:
|
|
run_manager.on_llm_new_token(chunk.value)
|
|
yield GenerationChunk(text=chunk.value)
|
|
|
|
async def _astream(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[list[str]] = None,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> AsyncIterator[GenerationChunk]:
|
|
params = {**self._identifying_params, **kwargs, "stream": True}
|
|
if stop is not None:
|
|
params.update({"stop": stop})
|
|
response = await self.async_client.completions.create(prompt=prompt, **params)
|
|
async for chunk in response:
|
|
if run_manager:
|
|
await run_manager.on_llm_new_token(chunk.value)
|
|
yield GenerationChunk(text=chunk.value)
|