mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-09 01:00:01 +00:00
In collaboration with @rlouf I build an [outlines](https://dottxt-ai.github.io/outlines/latest/) integration for langchain! I think this is really useful for doing any type of structured output locally. [Dottxt](https://dottxt.co) spend alot of work optimising this process at a lower level ([outlines-core](https://pypi.org/project/outlines-core/0.1.14/) written in rust) so I think this is a better alternative over all current approaches in langchain to do structured output. It also implements the `.with_structured_output` method so it should be a drop in replacement for a lot of applications. The integration includes: - **Outlines LLM class** - **ChatOutlines class** - **Tutorial Cookbooks** - **Documentation Page** - **Validation and error messages** - **Exposes Outlines Structured output features** - **Support for multiple backends** - **Integration and Unit Tests** Dependencies: `outlines` + additional (depending on backend used) I am not sure if the unit-tests comply with all requirements, if not I suggest to just remove them since I don't see a useful way to do it differently. ### Quick overview: Chat Models: <img width="698" alt="image" src="https://github.com/user-attachments/assets/05a499b9-858c-4397-a9ff-165c2b3e7acc"> Structured Output: <img width="955" alt="image" src="https://github.com/user-attachments/assets/b9fcac11-d3e5-4698-b1ae-8c4cb3d54c45"> --------- Co-authored-by: Vadym Barda <vadym@langchain.dev>
124 lines
3.8 KiB
Python
124 lines
3.8 KiB
Python
# flake8: noqa
|
|
"""Test Outlines wrapper."""
|
|
|
|
from typing import Generator
|
|
import re
|
|
import platform
|
|
import pytest
|
|
|
|
from langchain_community.llms.outlines import Outlines
|
|
from pydantic import BaseModel
|
|
|
|
from tests.unit_tests.callbacks.fake_callback_handler import FakeCallbackHandler
|
|
|
|
|
|
MODEL = "microsoft/Phi-3-mini-4k-instruct"
|
|
LLAMACPP_MODEL = "microsoft/Phi-3-mini-4k-instruct-gguf/Phi-3-mini-4k-instruct-q4.gguf"
|
|
|
|
BACKENDS = ["transformers", "llamacpp"]
|
|
if platform.system() != "Darwin":
|
|
BACKENDS.append("vllm")
|
|
if platform.system() == "Darwin":
|
|
BACKENDS.append("mlxlm")
|
|
|
|
|
|
@pytest.fixture(params=BACKENDS)
|
|
def llm(request: pytest.FixtureRequest) -> Outlines:
|
|
if request.param == "llamacpp":
|
|
return Outlines(model=LLAMACPP_MODEL, backend=request.param, max_tokens=100)
|
|
else:
|
|
return Outlines(model=MODEL, backend=request.param, max_tokens=100)
|
|
|
|
|
|
def test_outlines_inference(llm: Outlines) -> None:
|
|
"""Test valid outlines inference."""
|
|
output = llm.invoke("Say foo:")
|
|
assert isinstance(output, str)
|
|
assert len(output) > 1
|
|
|
|
|
|
def test_outlines_streaming(llm: Outlines) -> None:
|
|
"""Test streaming tokens from Outlines."""
|
|
generator = llm.stream("Q: How do you say 'hello' in Spanish?\n\nA:")
|
|
stream_results_string = ""
|
|
assert isinstance(generator, Generator)
|
|
|
|
for chunk in generator:
|
|
print(chunk)
|
|
assert isinstance(chunk, str)
|
|
stream_results_string += chunk
|
|
print(stream_results_string)
|
|
assert len(stream_results_string.strip()) > 1
|
|
|
|
|
|
def test_outlines_streaming_callback(llm: Outlines) -> None:
|
|
"""Test that streaming correctly invokes on_llm_new_token callback."""
|
|
MIN_CHUNKS = 5
|
|
|
|
callback_handler = FakeCallbackHandler()
|
|
llm.callbacks = [callback_handler]
|
|
llm.verbose = True
|
|
llm.invoke("Q: Can you count to 10? A:'1, ")
|
|
assert callback_handler.llm_streams >= MIN_CHUNKS
|
|
|
|
|
|
def test_outlines_regex(llm: Outlines) -> None:
|
|
"""Test regex for generating a valid IP address"""
|
|
ip_regex = r"((25[0-5]|2[0-4]\d|[01]?\d\d?)\.){3}(25[0-5]|2[0-4]\d|[01]?\d\d?)"
|
|
llm.regex = ip_regex
|
|
assert llm.regex == ip_regex
|
|
|
|
output = llm.invoke("Q: What is the IP address of googles dns server?\n\nA: ")
|
|
|
|
assert isinstance(output, str)
|
|
|
|
assert re.match(
|
|
ip_regex, output
|
|
), f"Generated output '{output}' is not a valid IP address"
|
|
|
|
|
|
def test_outlines_type_constraints(llm: Outlines) -> None:
|
|
"""Test type constraints for generating an integer"""
|
|
llm.type_constraints = int
|
|
output = llm.invoke(
|
|
"Q: What is the answer to life, the universe, and everything?\n\nA: "
|
|
)
|
|
assert int(output)
|
|
|
|
|
|
def test_outlines_json(llm: Outlines) -> None:
|
|
"""Test json for generating a valid JSON object"""
|
|
|
|
class Person(BaseModel):
|
|
name: str
|
|
|
|
llm.json_schema = Person
|
|
output = llm.invoke("Q: Who is the author of LangChain?\n\nA: ")
|
|
person = Person.model_validate_json(output)
|
|
assert isinstance(person, Person)
|
|
|
|
|
|
def test_outlines_grammar(llm: Outlines) -> None:
|
|
"""Test grammar for generating a valid arithmetic expression"""
|
|
llm.grammar = """
|
|
?start: expression
|
|
?expression: term (("+" | "-") term)*
|
|
?term: factor (("*" | "/") factor)*
|
|
?factor: NUMBER | "-" factor | "(" expression ")"
|
|
%import common.NUMBER
|
|
%import common.WS
|
|
%ignore WS
|
|
"""
|
|
|
|
output = llm.invoke("Here is a complex arithmetic expression: ")
|
|
|
|
# Validate the output is a non-empty string
|
|
assert (
|
|
isinstance(output, str) and output.strip()
|
|
), "Output should be a non-empty string"
|
|
|
|
# Use a simple regex to check if the output contains basic arithmetic operations and numbers
|
|
assert re.search(
|
|
r"[\d\+\-\*/\(\)]+", output
|
|
), f"Generated output '{output}' does not appear to be a valid arithmetic expression"
|