mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-27 22:37:46 +00:00
This PR upgrades langchain-community to pydantic 2.
* Most of this PR was auto-generated using code mods with gritql
(https://github.com/eyurtsev/migrate-pydantic/tree/main)
* Subsequently, some code was fixed manually due to accommodate
differences between pydantic 1 and 2
Breaking Changes:
- Use TEXTEMBED_API_KEY and TEXTEMBEB_API_URL for env variables for text
embed integrations:
cbea780492
Other changes:
- Added pydantic_settings as a required dependency for community. This
may be removed if we have enough time to convert the dependency into an
optional one.
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
44 lines
1.5 KiB
Python
44 lines
1.5 KiB
Python
from typing import Any, List, Optional
|
|
|
|
from langchain_core.callbacks import CallbackManagerForRetrieverRun
|
|
from langchain_core.documents import Document
|
|
from langchain_core.retrievers import BaseRetriever
|
|
from pydantic import model_validator
|
|
|
|
|
|
class MetalRetriever(BaseRetriever):
|
|
"""`Metal API` retriever."""
|
|
|
|
client: Any
|
|
"""The Metal client to use."""
|
|
params: Optional[dict] = None
|
|
"""The parameters to pass to the Metal client."""
|
|
|
|
@model_validator(mode="before")
|
|
@classmethod
|
|
def validate_client(cls, values: dict) -> Any:
|
|
"""Validate that the client is of the correct type."""
|
|
from metal_sdk.metal import Metal
|
|
|
|
if "client" in values:
|
|
client = values["client"]
|
|
if not isinstance(client, Metal):
|
|
raise ValueError(
|
|
"Got unexpected client, should be of type metal_sdk.metal.Metal. "
|
|
f"Instead, got {type(client)}"
|
|
)
|
|
|
|
values["params"] = values.get("params", {})
|
|
|
|
return values
|
|
|
|
def _get_relevant_documents(
|
|
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
|
|
) -> List[Document]:
|
|
results = self.client.search({"text": query}, **self.params)
|
|
final_results = []
|
|
for r in results["data"]:
|
|
metadata = {k: v for k, v in r.items() if k != "text"}
|
|
final_results.append(Document(page_content=r["text"], metadata=metadata))
|
|
return final_results
|