Files
langchain/libs/partners/couchbase/tests/utils.py
2024-09-04 16:29:14 -07:00

100 lines
3.3 KiB
Python

"""Fake Embedding class for testing purposes."""
from typing import Any, Dict, List, Mapping, Optional, cast
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.embeddings import Embeddings
from langchain_core.language_models.llms import LLM
class FakeEmbeddings(Embeddings):
"""Fake embeddings functionality for testing."""
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Return simple embeddings.
Embeddings encode each text as its index."""
return [[float(1.0)] * 9 + [float(i)] for i in range(len(texts))]
async def aembed_documents(self, texts: List[str]) -> List[List[float]]:
return self.embed_documents(texts)
def embed_query(self, text: str) -> List[float]:
"""Return constant query embeddings.
Embeddings are identical to embed_documents(texts)[0].
Distance to each text will be that text's index,
as it was passed to embed_documents."""
return [float(1.0)] * 9 + [float(0.0)]
async def aembed_query(self, text: str) -> List[float]:
return self.embed_query(text)
class ConsistentFakeEmbeddings(FakeEmbeddings):
"""Fake embeddings which remember all the texts seen so far to return consistent
vectors for the same texts."""
def __init__(self, dimensionality: int = 10) -> None:
self.known_texts: List[str] = []
self.dimensionality = dimensionality
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Return consistent embeddings for each text seen so far."""
out_vectors = []
for text in texts:
if text not in self.known_texts:
self.known_texts.append(text)
vector = [float(1.0)] * (self.dimensionality - 1) + [
float(self.known_texts.index(text))
]
out_vectors.append(vector)
return out_vectors
def embed_query(self, text: str) -> List[float]:
"""Return consistent embeddings for the text, if seen before, or a constant
one if the text is unknown."""
return self.embed_documents([text])[0]
class FakeLLM(LLM):
"""Fake LLM wrapper for testing purposes."""
queries: Optional[Mapping] = None
sequential_responses: Optional[bool] = False
response_index: int = 0
def get_num_tokens(self, text: str) -> int:
"""Return number of tokens."""
return len(text.split())
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "fake"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
if self.sequential_responses:
return self._get_next_response_in_sequence
if self.queries is not None:
return self.queries[prompt]
if stop is None:
return "foo"
else:
return "bar"
@property
def _identifying_params(self) -> Dict[str, Any]:
return {}
@property
def _get_next_response_in_sequence(self) -> str:
queries = cast(Mapping, self.queries)
response = queries[list(queries.keys())[self.response_index]]
self.response_index = self.response_index + 1
return response