langchain/libs/partners/couchbase
Nithish Raghunandanan 2d21274bf6
couchbase: Add ttl support to caches & chat_message_history (#26214)
**Description:** Add support to delete documents automatically from the
caches & chat message history by adding a new optional parameter, `ttl`.


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

---------

Co-authored-by: Nithish Raghunandanan <nithishr@users.noreply.github.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-09-20 23:44:29 +00:00
..
langchain_couchbase couchbase: Add ttl support to caches & chat_message_history (#26214) 2024-09-20 23:44:29 +00:00
scripts multiple: pydantic 2 compatibility, v0.3 (#26443) 2024-09-13 14:38:45 -07:00
tests couchbase: Add ttl support to caches & chat_message_history (#26214) 2024-09-20 23:44:29 +00:00
.gitignore couchbase: Add the initial version of Couchbase partner package (#22087) 2024-06-07 14:04:08 -07:00
LICENSE couchbase: Add the initial version of Couchbase partner package (#22087) 2024-06-07 14:04:08 -07:00
Makefile standard-tests[patch]: add Ser/Des test 2024-09-04 10:24:06 -07:00
poetry.lock couchbase: Add ttl support to caches & chat_message_history (#26214) 2024-09-20 23:44:29 +00:00
pyproject.toml couchbase: Add ttl support to caches & chat_message_history (#26214) 2024-09-20 23:44:29 +00:00
README.md couchbase: Add the initial version of Couchbase partner package (#22087) 2024-06-07 14:04:08 -07:00

langchain-couchbase

This package contains the LangChain integration with Couchbase

Installation

pip install -U langchain-couchbase

Usage

The CouchbaseVectorStore class exposes the connection to the Couchbase vector store.

from langchain_couchbase.vectorstores import CouchbaseVectorStore

from couchbase.cluster import Cluster
from couchbase.auth import PasswordAuthenticator
from couchbase.options import ClusterOptions
from datetime import timedelta

auth = PasswordAuthenticator(username, password)
options = ClusterOptions(auth)
connect_string = "couchbases://localhost"
cluster = Cluster(connect_string, options)

# Wait until the cluster is ready for use.
cluster.wait_until_ready(timedelta(seconds=5))

embeddings = OpenAIEmbeddings()

vectorstore = CouchbaseVectorStore(
    cluster=cluster,
    bucket_name="",
    scope_name="",
    collection_name="",
    embedding=embeddings,
    index_name="vector-search-index",
)