Files
langchain/libs/experimental/tests/unit_tests/test_ollama_functions.py
Erick Friis c2a3021bb0 multiple: pydantic 2 compatibility, v0.3 (#26443)
Signed-off-by: ChengZi <chen.zhang@zilliz.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Dan O'Donovan <dan.odonovan@gmail.com>
Co-authored-by: Tom Daniel Grande <tomdgrande@gmail.com>
Co-authored-by: Grande <Tom.Daniel.Grande@statsbygg.no>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: ccurme <chester.curme@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Tomaz Bratanic <bratanic.tomaz@gmail.com>
Co-authored-by: ZhangShenao <15201440436@163.com>
Co-authored-by: Friso H. Kingma <fhkingma@gmail.com>
Co-authored-by: ChengZi <chen.zhang@zilliz.com>
Co-authored-by: Nuno Campos <nuno@langchain.dev>
Co-authored-by: Morgante Pell <morgantep@google.com>
2024-09-13 14:38:45 -07:00

31 lines
827 B
Python

import json
from typing import Any
from unittest.mock import patch
from langchain_core.prompts import ChatPromptTemplate
from pydantic import BaseModel
from langchain_experimental.llms.ollama_functions import OllamaFunctions
class Schema(BaseModel):
pass
@patch.object(OllamaFunctions, "_create_stream")
def test_convert_image_prompt(
_create_stream_mock: Any,
) -> None:
response = {"message": {"content": '{"tool": "Schema", "tool_input": {}}'}}
_create_stream_mock.return_value = [json.dumps(response)]
prompt = ChatPromptTemplate.from_messages(
[("human", [{"image_url": "data:image/jpeg;base64,{image_url}"}])]
)
lmm = prompt | OllamaFunctions().with_structured_output(schema=Schema)
schema_instance = lmm.invoke(dict(image_url=""))
assert schema_instance is not None