mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-19 13:23:35 +00:00
This change refines the handling of _model_kwargs in POST requests. Instead of nesting _model_kwargs as a dictionary under the parameters key, it is now directly unpacked and merged into the request's JSON payload. This ensures that the model parameters are passed correctly and avoids unnecessary nesting.E. g.: ```python import asyncio from langchain_huggingface.embeddings import HuggingFaceEndpointEmbeddings embedding_input = ["This input will get multiplied" * 10000] embeddings = HuggingFaceEndpointEmbeddings( model="http://127.0.0.1:8081/embed", model_kwargs={"truncate": True}, ) # Truncated parameters in synchronized methods are handled correctly embeddings.embed_documents(texts=embedding_input) # The truncate parameter is not handled correctly in the asynchronous method, # and 413 Request Entity Too Large is returned. asyncio.run(embeddings.aembed_documents(texts=embedding_input)) ``` Co-authored-by: af su <saf@zjuici.com> Co-authored-by: Erick Friis <erick@langchain.dev> |
||
---|---|---|
.. | ||
langchain_huggingface | ||
scripts | ||
tests | ||
.gitignore | ||
LICENSE | ||
Makefile | ||
poetry.lock | ||
pyproject.toml | ||
README.md |
langchain-huggingface
This package contains the LangChain integrations for huggingface related classes.
Installation and Setup
- Install the LangChain partner package
pip install langchain-huggingface