mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-16 03:48:57 +00:00
Signed-off-by: ChengZi <chen.zhang@zilliz.com> Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com> Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com> Co-authored-by: Dan O'Donovan <dan.odonovan@gmail.com> Co-authored-by: Tom Daniel Grande <tomdgrande@gmail.com> Co-authored-by: Grande <Tom.Daniel.Grande@statsbygg.no> Co-authored-by: Bagatur <baskaryan@gmail.com> Co-authored-by: ccurme <chester.curme@gmail.com> Co-authored-by: Harrison Chase <hw.chase.17@gmail.com> Co-authored-by: Tomaz Bratanic <bratanic.tomaz@gmail.com> Co-authored-by: ZhangShenao <15201440436@163.com> Co-authored-by: Friso H. Kingma <fhkingma@gmail.com> Co-authored-by: ChengZi <chen.zhang@zilliz.com> Co-authored-by: Nuno Campos <nuno@langchain.dev> Co-authored-by: Morgante Pell <morgantep@google.com>
72 lines
2.1 KiB
Python
72 lines
2.1 KiB
Python
"""Experimental implementation of RELLM wrapped LLM."""
|
|
|
|
from __future__ import annotations
|
|
|
|
from typing import TYPE_CHECKING, Any, List, Optional, cast
|
|
|
|
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
|
|
from langchain_community.llms.utils import enforce_stop_tokens
|
|
from langchain_core.callbacks.manager import CallbackManagerForLLMRun
|
|
from pydantic import Field, model_validator
|
|
|
|
if TYPE_CHECKING:
|
|
import rellm
|
|
from regex import Pattern as RegexPattern
|
|
else:
|
|
try:
|
|
from regex import Pattern as RegexPattern
|
|
except ImportError:
|
|
pass
|
|
|
|
|
|
def import_rellm() -> rellm:
|
|
"""Lazily import of the rellm package."""
|
|
try:
|
|
import rellm
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import rellm python package. "
|
|
"Please install it with `pip install rellm`."
|
|
)
|
|
return rellm
|
|
|
|
|
|
class RELLM(HuggingFacePipeline):
|
|
"""RELLM wrapped LLM using HuggingFace Pipeline API."""
|
|
|
|
regex: RegexPattern = Field(..., description="The structured format to complete.")
|
|
max_new_tokens: int = Field(
|
|
default=200, description="Maximum number of new tokens to generate."
|
|
)
|
|
|
|
@model_validator(mode="before")
|
|
@classmethod
|
|
def check_rellm_installation(cls, values: dict) -> Any:
|
|
import_rellm()
|
|
return values
|
|
|
|
def _call(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> str:
|
|
rellm = import_rellm()
|
|
from transformers import Text2TextGenerationPipeline
|
|
|
|
pipeline = cast(Text2TextGenerationPipeline, self.pipeline)
|
|
|
|
text = rellm.complete_re(
|
|
prompt,
|
|
self.regex,
|
|
tokenizer=pipeline.tokenizer,
|
|
model=pipeline.model,
|
|
max_new_tokens=self.max_new_tokens,
|
|
)
|
|
if stop is not None:
|
|
# This is a bit hacky, but I can't figure out a better way to enforce
|
|
# stop tokens when making calls to huggingface_hub.
|
|
text = enforce_stop_tokens(text, stop)
|
|
return text
|