langchain/libs/community/langchain_community/embeddings/ovhcloud.py
Erick Friis c2a3021bb0
multiple: pydantic 2 compatibility, v0.3 (#26443)
Signed-off-by: ChengZi <chen.zhang@zilliz.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Dan O'Donovan <dan.odonovan@gmail.com>
Co-authored-by: Tom Daniel Grande <tomdgrande@gmail.com>
Co-authored-by: Grande <Tom.Daniel.Grande@statsbygg.no>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: ccurme <chester.curme@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Tomaz Bratanic <bratanic.tomaz@gmail.com>
Co-authored-by: ZhangShenao <15201440436@163.com>
Co-authored-by: Friso H. Kingma <fhkingma@gmail.com>
Co-authored-by: ChengZi <chen.zhang@zilliz.com>
Co-authored-by: Nuno Campos <nuno@langchain.dev>
Co-authored-by: Morgante Pell <morgantep@google.com>
2024-09-13 14:38:45 -07:00

96 lines
3.3 KiB
Python

import logging
import time
from typing import Any, List
import requests
from langchain_core.embeddings import Embeddings
from pydantic import BaseModel, ConfigDict
logger = logging.getLogger(__name__)
class OVHCloudEmbeddings(BaseModel, Embeddings):
"""
OVHcloud AI Endpoints Embeddings.
"""
""" OVHcloud AI Endpoints Access Token"""
access_token: str = ""
""" OVHcloud AI Endpoints model name for embeddings generation"""
model_name: str = ""
""" OVHcloud AI Endpoints region"""
region: str = "kepler"
model_config = ConfigDict(extra="forbid", protected_namespaces=())
def __init__(self, **kwargs: Any):
super().__init__(**kwargs)
if self.access_token == "":
raise ValueError("Access token is required for OVHCloud embeddings.")
if self.model_name == "":
raise ValueError("Model name is required for OVHCloud embeddings.")
if self.region == "":
raise ValueError("Region is required for OVHCloud embeddings.")
def _generate_embedding(self, text: str) -> List[float]:
"""Generate embeddings from OVHCLOUD AIE.
Args:
text (str): The text to embed.
Returns:
List[float]: Embeddings for the text.
"""
headers = {
"content-type": "text/plain",
"Authorization": f"Bearer {self.access_token}",
}
session = requests.session()
while True:
response = session.post(
f"https://{self.model_name}.endpoints.{self.region}.ai.cloud.ovh.net/api/text2vec",
headers=headers,
data=text,
)
if response.status_code != 200:
if response.status_code == 429:
"""Rate limit exceeded, wait for reset"""
reset_time = int(response.headers.get("RateLimit-Reset", 0))
logger.info("Rate limit exceeded. Waiting %d seconds.", reset_time)
if reset_time > 0:
time.sleep(reset_time)
continue
else:
"""Rate limit reset time has passed, retry immediately"""
continue
if response.status_code == 401:
""" Unauthorized, retry with new token """
raise ValueError("Unauthorized, retry with new token")
""" Handle other non-200 status codes """
raise ValueError(
"Request failed with status code: {status_code}, {text}".format(
status_code=response.status_code, text=response.text
)
)
return response.json()
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Create a retry decorator for PremAIEmbeddings.
Args:
texts (List[str]): The list of texts to embed.
Returns:
List[List[float]]: List of embeddings, one for each input text.
"""
return [self._generate_embedding(text) for text in texts]
def embed_query(self, text: str) -> List[float]:
"""Embed a single query text.
Args:
text (str): The text to embed.
Returns:
List[float]: Embeddings for the text.
"""
return self._generate_embedding(text)