langchain/libs/community/tests/integration_tests/embeddings/test_azure_openai.py
Erick Friis 600b7bdd61
all: test 3.13 ci (#27197)
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-10-25 12:56:58 -07:00

125 lines
3.9 KiB
Python

"""Test openai embeddings."""
import os
from typing import Any
import numpy as np
import pytest
from langchain_community.embeddings import AzureOpenAIEmbeddings
OPENAI_API_VERSION = os.environ.get("AZURE_OPENAI_API_VERSION", "")
OPENAI_API_BASE = os.environ.get("AZURE_OPENAI_API_BASE", "")
OPENAI_API_KEY = os.environ.get("AZURE_OPENAI_API_KEY", "")
DEPLOYMENT_NAME = os.environ.get(
"AZURE_OPENAI_DEPLOYMENT_NAME",
os.environ.get("AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME", ""),
)
def _get_embeddings(**kwargs: Any) -> AzureOpenAIEmbeddings:
return AzureOpenAIEmbeddings( # type: ignore[call-arg]
azure_deployment=DEPLOYMENT_NAME,
api_version=OPENAI_API_VERSION,
openai_api_base=OPENAI_API_BASE,
openai_api_key=OPENAI_API_KEY,
**kwargs,
)
@pytest.mark.scheduled
def test_azure_openai_embedding_documents() -> None:
"""Test openai embeddings."""
documents = ["foo bar"]
embedding = _get_embeddings()
output = embedding.embed_documents(documents)
assert len(output) == 1
assert len(output[0]) == 1536
@pytest.mark.scheduled
def test_azure_openai_embedding_documents_multiple() -> None:
"""Test openai embeddings."""
documents = ["foo bar", "bar foo", "foo"]
embedding = _get_embeddings(chunk_size=2)
embedding.embedding_ctx_length = 8191
output = embedding.embed_documents(documents)
assert embedding.chunk_size == 2
assert len(output) == 3
assert len(output[0]) == 1536
assert len(output[1]) == 1536
assert len(output[2]) == 1536
@pytest.mark.scheduled
def test_azure_openai_embedding_documents_chunk_size() -> None:
"""Test openai embeddings."""
documents = ["foo bar"] * 20
embedding = _get_embeddings()
embedding.embedding_ctx_length = 8191
output = embedding.embed_documents(documents)
# Max 16 chunks per batch on Azure OpenAI embeddings
assert embedding.chunk_size == 16
assert len(output) == 20
assert all([len(out) == 1536 for out in output])
@pytest.mark.scheduled
async def test_azure_openai_embedding_documents_async_multiple() -> None:
"""Test openai embeddings."""
documents = ["foo bar", "bar foo", "foo"]
embedding = _get_embeddings(chunk_size=2)
embedding.embedding_ctx_length = 8191
output = await embedding.aembed_documents(documents)
assert len(output) == 3
assert len(output[0]) == 1536
assert len(output[1]) == 1536
assert len(output[2]) == 1536
@pytest.mark.scheduled
def test_azure_openai_embedding_query() -> None:
"""Test openai embeddings."""
document = "foo bar"
embedding = _get_embeddings()
output = embedding.embed_query(document)
assert len(output) == 1536
@pytest.mark.scheduled
async def test_azure_openai_embedding_async_query() -> None:
"""Test openai embeddings."""
document = "foo bar"
embedding = _get_embeddings()
output = await embedding.aembed_query(document)
assert len(output) == 1536
@pytest.mark.skip(reason="Unblock scheduled testing. TODO: fix.")
def test_azure_openai_embedding_with_empty_string() -> None:
"""Test openai embeddings with empty string."""
import openai
document = ["", "abc"]
embedding = _get_embeddings()
output = embedding.embed_documents(document)
assert len(output) == 2
assert len(output[0]) == 1536
expected_output = openai.Embedding.create(input="", model="text-embedding-ada-002")[ # type: ignore[attr-defined]
"data"
][0]["embedding"]
assert np.allclose(output[0], expected_output)
assert len(output[1]) == 1536
@pytest.mark.scheduled
def test_embed_documents_normalized() -> None:
output = _get_embeddings().embed_documents(["foo walked to the market"])
assert np.isclose(np.linalg.norm(output[0]), 1.0)
@pytest.mark.scheduled
def test_embed_query_normalized() -> None:
output = _get_embeddings().embed_query("foo walked to the market")
assert np.isclose(np.linalg.norm(output), 1.0)