mirror of
https://github.com/hwchase17/langchain.git
synced 2025-08-10 13:27:36 +00:00
- **Description:** Since mlx_lm 0.20, all calls to mlx crash due to deprecation of the way parameters are passed to methods generate and generate_step. Parameters top_p, temp, repetition_penalty and repetition_context_size are not passed directly to those method anymore but wrapped into "sampler" and "logit_processor". - **Dependencies:** mlx_lm (optional) - **Tests:** I've had a new test to existing test file: tests/integration_tests/llms/test_mlx_pipeline.py --------- Co-authored-by: Jean-Philippe Dournel <jp@insightkeeper.io>
57 lines
1.7 KiB
Python
Executable File
57 lines
1.7 KiB
Python
Executable File
"""Test MLX Pipeline wrapper."""
|
|
|
|
import pytest
|
|
|
|
from langchain_community.llms.mlx_pipeline import MLXPipeline
|
|
|
|
|
|
@pytest.mark.requires("mlx_lm")
|
|
def test_mlx_pipeline_text_generation() -> None:
|
|
"""Test valid call to MLX text generation model."""
|
|
llm = MLXPipeline.from_model_id(
|
|
model_id="mlx-community/quantized-gemma-2b",
|
|
pipeline_kwargs={"max_tokens": 10},
|
|
)
|
|
output = llm.invoke("Say foo:")
|
|
assert isinstance(output, str)
|
|
|
|
|
|
@pytest.mark.requires("mlx_lm")
|
|
def test_init_with_model_and_tokenizer() -> None:
|
|
"""Test initialization with a HF pipeline."""
|
|
from mlx_lm import load
|
|
|
|
model, tokenizer = load("mlx-community/quantized-gemma-2b")
|
|
llm = MLXPipeline(model=model, tokenizer=tokenizer)
|
|
output = llm.invoke("Say foo:")
|
|
assert isinstance(output, str)
|
|
|
|
|
|
@pytest.mark.requires("mlx_lm")
|
|
def test_huggingface_pipeline_runtime_kwargs() -> None:
|
|
"""Test pipelines specifying the device map parameter."""
|
|
llm = MLXPipeline.from_model_id(
|
|
model_id="mlx-community/quantized-gemma-2b",
|
|
)
|
|
prompt = "Say foo:"
|
|
output = llm.invoke(prompt, pipeline_kwargs={"max_tokens": 2})
|
|
assert len(output) < 10
|
|
|
|
|
|
@pytest.mark.requires("mlx_lm")
|
|
def test_mlx_pipeline_with_params() -> None:
|
|
"""Test valid call to MLX text generation model."""
|
|
llm = MLXPipeline.from_model_id(
|
|
model_id="mlx-community/quantized-gemma-2b",
|
|
pipeline_kwargs={
|
|
"max_tokens": 10,
|
|
"temp": 0.8,
|
|
"verbose": False,
|
|
"repetition_penalty": 1.1,
|
|
"repetition_context_size": 64,
|
|
"top_p": 0.95,
|
|
},
|
|
)
|
|
output = llm.invoke("Say foo:")
|
|
assert isinstance(output, str)
|