mirror of
https://github.com/hwchase17/langchain.git
synced 2025-08-26 21:11:25 +00:00
- **Description:** Add to check pad_token_id and eos_token_id of model config. It seems that this is the same bug as the HuggingFace TGI bug. It's same bug as #29434 - **Issue:** #29431 - **Dependencies:** none - **Twitter handle:** tell14 Example code is followings: ```python from langchain_huggingface.llms import HuggingFacePipeline hf = HuggingFacePipeline.from_model_id( model_id="meta-llama/Llama-3.2-3B-Instruct", task="text-generation", pipeline_kwargs={"max_new_tokens": 10}, ) from langchain_core.prompts import PromptTemplate template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate.from_template(template) chain = prompt | hf question = "What is electroencephalography?" print(chain.invoke({"question": question})) ```
263 lines
7.9 KiB
Python
263 lines
7.9 KiB
Python
from typing import Any, Dict, List # type: ignore[import-not-found]
|
|
from unittest.mock import MagicMock, Mock, patch
|
|
|
|
import pytest # type: ignore[import-not-found]
|
|
from langchain_core.messages import (
|
|
AIMessage,
|
|
BaseMessage,
|
|
ChatMessage,
|
|
HumanMessage,
|
|
SystemMessage,
|
|
)
|
|
from langchain_core.outputs import ChatResult
|
|
from langchain_core.tools import BaseTool
|
|
|
|
from langchain_huggingface.chat_models import ( # type: ignore[import]
|
|
TGI_MESSAGE,
|
|
ChatHuggingFace,
|
|
_convert_message_to_chat_message,
|
|
_convert_TGI_message_to_LC_message,
|
|
)
|
|
from langchain_huggingface.llms.huggingface_endpoint import (
|
|
HuggingFaceEndpoint,
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
("message", "expected"),
|
|
[
|
|
(
|
|
SystemMessage(content="Hello"),
|
|
dict(role="system", content="Hello"),
|
|
),
|
|
(
|
|
HumanMessage(content="Hello"),
|
|
dict(role="user", content="Hello"),
|
|
),
|
|
(
|
|
AIMessage(content="Hello"),
|
|
dict(role="assistant", content="Hello", tool_calls=None),
|
|
),
|
|
(
|
|
ChatMessage(role="assistant", content="Hello"),
|
|
dict(role="assistant", content="Hello"),
|
|
),
|
|
],
|
|
)
|
|
def test_convert_message_to_chat_message(
|
|
message: BaseMessage, expected: Dict[str, str]
|
|
) -> None:
|
|
result = _convert_message_to_chat_message(message)
|
|
assert result == expected
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
("tgi_message", "expected"),
|
|
[
|
|
(
|
|
TGI_MESSAGE(role="assistant", content="Hello", tool_calls=[]),
|
|
AIMessage(content="Hello"),
|
|
),
|
|
(
|
|
TGI_MESSAGE(role="assistant", content="", tool_calls=[]),
|
|
AIMessage(content=""),
|
|
),
|
|
(
|
|
TGI_MESSAGE(
|
|
role="assistant",
|
|
content="",
|
|
tool_calls=[{"function": {"arguments": "function string"}}],
|
|
),
|
|
AIMessage(
|
|
content="",
|
|
additional_kwargs={
|
|
"tool_calls": [{"function": {"arguments": '"function string"'}}]
|
|
},
|
|
),
|
|
),
|
|
(
|
|
TGI_MESSAGE(
|
|
role="assistant",
|
|
content="",
|
|
tool_calls=[
|
|
{"function": {"arguments": {"answer": "function's string"}}}
|
|
],
|
|
),
|
|
AIMessage(
|
|
content="",
|
|
additional_kwargs={
|
|
"tool_calls": [
|
|
{"function": {"arguments": '{"answer": "function\'s string"}'}}
|
|
]
|
|
},
|
|
),
|
|
),
|
|
],
|
|
)
|
|
def test_convert_TGI_message_to_LC_message(
|
|
tgi_message: TGI_MESSAGE, expected: BaseMessage
|
|
) -> None:
|
|
result = _convert_TGI_message_to_LC_message(tgi_message)
|
|
assert result == expected
|
|
|
|
|
|
@pytest.fixture
|
|
def mock_llm() -> Mock:
|
|
llm = Mock(spec=HuggingFaceEndpoint)
|
|
llm.inference_server_url = "test endpoint url"
|
|
return llm
|
|
|
|
|
|
@pytest.fixture
|
|
@patch(
|
|
"langchain_huggingface.chat_models.huggingface.ChatHuggingFace._resolve_model_id"
|
|
)
|
|
def chat_hugging_face(mock_resolve_id: Any, mock_llm: Any) -> ChatHuggingFace:
|
|
chat_hf = ChatHuggingFace(llm=mock_llm, tokenizer=MagicMock())
|
|
return chat_hf
|
|
|
|
|
|
def test_create_chat_result(chat_hugging_face: Any) -> None:
|
|
mock_response = MagicMock()
|
|
mock_response.choices = [
|
|
MagicMock(
|
|
message=TGI_MESSAGE(
|
|
role="assistant", content="test message", tool_calls=[]
|
|
),
|
|
finish_reason="test finish reason",
|
|
)
|
|
]
|
|
mock_response.usage = {"tokens": 420}
|
|
|
|
result = chat_hugging_face._create_chat_result(mock_response)
|
|
assert isinstance(result, ChatResult)
|
|
assert result.generations[0].message.content == "test message"
|
|
assert (
|
|
result.generations[0].generation_info["finish_reason"] == "test finish reason" # type: ignore[index]
|
|
)
|
|
assert result.llm_output["token_usage"]["tokens"] == 420 # type: ignore[index]
|
|
assert result.llm_output["model"] == chat_hugging_face.llm.inference_server_url # type: ignore[index]
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"messages, expected_error",
|
|
[
|
|
([], "At least one HumanMessage must be provided!"),
|
|
(
|
|
[HumanMessage(content="Hi"), AIMessage(content="Hello")],
|
|
"Last message must be a HumanMessage!",
|
|
),
|
|
],
|
|
)
|
|
def test_to_chat_prompt_errors(
|
|
chat_hugging_face: Any, messages: List[BaseMessage], expected_error: str
|
|
) -> None:
|
|
with pytest.raises(ValueError) as e:
|
|
chat_hugging_face._to_chat_prompt(messages)
|
|
assert expected_error in str(e.value)
|
|
|
|
|
|
def test_to_chat_prompt_valid_messages(chat_hugging_face: Any) -> None:
|
|
messages = [AIMessage(content="Hello"), HumanMessage(content="How are you?")]
|
|
expected_prompt = "Generated chat prompt"
|
|
|
|
chat_hugging_face.tokenizer.apply_chat_template.return_value = expected_prompt
|
|
|
|
result = chat_hugging_face._to_chat_prompt(messages)
|
|
|
|
assert result == expected_prompt
|
|
chat_hugging_face.tokenizer.apply_chat_template.assert_called_once_with(
|
|
[
|
|
{"role": "assistant", "content": "Hello"},
|
|
{"role": "user", "content": "How are you?"},
|
|
],
|
|
tokenize=False,
|
|
add_generation_prompt=True,
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
("message", "expected"),
|
|
[
|
|
(
|
|
SystemMessage(content="You are a helpful assistant."),
|
|
{"role": "system", "content": "You are a helpful assistant."},
|
|
),
|
|
(
|
|
AIMessage(content="How can I help you?"),
|
|
{"role": "assistant", "content": "How can I help you?"},
|
|
),
|
|
(
|
|
HumanMessage(content="Hello"),
|
|
{"role": "user", "content": "Hello"},
|
|
),
|
|
],
|
|
)
|
|
def test_to_chatml_format(
|
|
chat_hugging_face: Any, message: BaseMessage, expected: Dict[str, str]
|
|
) -> None:
|
|
result = chat_hugging_face._to_chatml_format(message)
|
|
assert result == expected
|
|
|
|
|
|
def test_to_chatml_format_with_invalid_type(chat_hugging_face: Any) -> None:
|
|
message = "Invalid message type"
|
|
with pytest.raises(ValueError) as e:
|
|
chat_hugging_face._to_chatml_format(message)
|
|
assert "Unknown message type:" in str(e.value)
|
|
|
|
|
|
def tool_mock() -> Dict:
|
|
return {"function": {"name": "test_tool"}}
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"tools, tool_choice, expected_exception, expected_message",
|
|
[
|
|
([tool_mock()], ["invalid type"], ValueError, "Unrecognized tool_choice type."),
|
|
(
|
|
[tool_mock(), tool_mock()],
|
|
"test_tool",
|
|
ValueError,
|
|
"must provide exactly one tool.",
|
|
),
|
|
(
|
|
[tool_mock()],
|
|
{"type": "function", "function": {"name": "other_tool"}},
|
|
ValueError,
|
|
"Tool choice {'type': 'function', 'function': {'name': 'other_tool'}} "
|
|
"was specified, but the only provided tool was test_tool.",
|
|
),
|
|
],
|
|
)
|
|
def test_bind_tools_errors(
|
|
chat_hugging_face: Any,
|
|
tools: Dict[str, str],
|
|
tool_choice: Any,
|
|
expected_exception: Any,
|
|
expected_message: str,
|
|
) -> None:
|
|
with patch(
|
|
"langchain_huggingface.chat_models.huggingface.convert_to_openai_tool",
|
|
side_effect=lambda x: x,
|
|
):
|
|
with pytest.raises(expected_exception) as excinfo:
|
|
chat_hugging_face.bind_tools(tools, tool_choice=tool_choice)
|
|
assert expected_message in str(excinfo.value)
|
|
|
|
|
|
def test_bind_tools(chat_hugging_face: Any) -> None:
|
|
tools = [MagicMock(spec=BaseTool)]
|
|
with (
|
|
patch(
|
|
"langchain_huggingface.chat_models.huggingface.convert_to_openai_tool",
|
|
side_effect=lambda x: x,
|
|
),
|
|
patch("langchain_core.runnables.base.Runnable.bind") as mock_super_bind,
|
|
):
|
|
chat_hugging_face.bind_tools(tools, tool_choice="auto")
|
|
mock_super_bind.assert_called_once()
|
|
_, kwargs = mock_super_bind.call_args
|
|
assert kwargs["tools"] == tools
|
|
assert kwargs["tool_choice"] == "auto"
|