mirror of
https://github.com/hwchase17/langchain.git
synced 2025-08-20 18:07:05 +00:00
221 lines
6.8 KiB
Python
221 lines
6.8 KiB
Python
"""DeepSeek chat models."""
|
|
|
|
from typing import Dict, Optional, Union
|
|
|
|
import openai
|
|
from langchain_core.outputs import ChatResult
|
|
from langchain_core.utils import from_env, secret_from_env
|
|
from langchain_openai.chat_models.base import BaseChatOpenAI
|
|
from pydantic import ConfigDict, Field, SecretStr, model_validator
|
|
from typing_extensions import Self
|
|
|
|
DEFAULT_API_BASE = "https://api.deepseek.com/v1"
|
|
|
|
|
|
class ChatDeepSeek(BaseChatOpenAI):
|
|
"""DeepSeek chat model integration to access models hosted in DeepSeek's API.
|
|
|
|
Setup:
|
|
Install ``langchain-deepseek`` and set environment variable ``DEEPSEEK_API_KEY``.
|
|
|
|
.. code-block:: bash
|
|
|
|
pip install -U langchain-deepseek
|
|
export DEEPSEEK_API_KEY="your-api-key"
|
|
|
|
Key init args — completion params:
|
|
model: str
|
|
Name of DeepSeek model to use, e.g. "deepseek-chat".
|
|
temperature: float
|
|
Sampling temperature.
|
|
max_tokens: Optional[int]
|
|
Max number of tokens to generate.
|
|
|
|
Key init args — client params:
|
|
timeout: Optional[float]
|
|
Timeout for requests.
|
|
max_retries: int
|
|
Max number of retries.
|
|
api_key: Optional[str]
|
|
DeepSeek API key. If not passed in will be read from env var DEEPSEEK_API_KEY.
|
|
|
|
See full list of supported init args and their descriptions in the params section.
|
|
|
|
Instantiate:
|
|
.. code-block:: python
|
|
|
|
from langchain_deepseek import ChatDeepSeek
|
|
|
|
llm = ChatDeepSeek(
|
|
model="...",
|
|
temperature=0,
|
|
max_tokens=None,
|
|
timeout=None,
|
|
max_retries=2,
|
|
# api_key="...",
|
|
# other params...
|
|
)
|
|
|
|
Invoke:
|
|
.. code-block:: python
|
|
|
|
messages = [
|
|
("system", "You are a helpful translator. Translate the user sentence to French."),
|
|
("human", "I love programming."),
|
|
]
|
|
llm.invoke(messages)
|
|
|
|
Stream:
|
|
.. code-block:: python
|
|
|
|
for chunk in llm.stream(messages):
|
|
print(chunk)
|
|
|
|
.. code-block:: python
|
|
|
|
stream = llm.stream(messages)
|
|
full = next(stream)
|
|
for chunk in stream:
|
|
full += chunk
|
|
full
|
|
|
|
Async:
|
|
.. code-block:: python
|
|
|
|
await llm.ainvoke(messages)
|
|
|
|
# stream:
|
|
# async for chunk in (await llm.astream(messages))
|
|
|
|
# batch:
|
|
# await llm.abatch([messages])
|
|
|
|
Tool calling:
|
|
.. code-block:: python
|
|
|
|
from pydantic import BaseModel, Field
|
|
|
|
class GetWeather(BaseModel):
|
|
'''Get the current weather in a given location'''
|
|
|
|
location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
|
|
|
|
class GetPopulation(BaseModel):
|
|
'''Get the current population in a given location'''
|
|
|
|
location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
|
|
|
|
llm_with_tools = llm.bind_tools([GetWeather, GetPopulation])
|
|
ai_msg = llm_with_tools.invoke("Which city is hotter today and which is bigger: LA or NY?")
|
|
ai_msg.tool_calls
|
|
|
|
See ``ChatDeepSeek.bind_tools()`` method for more.
|
|
|
|
Structured output:
|
|
.. code-block:: python
|
|
|
|
from typing import Optional
|
|
|
|
from pydantic import BaseModel, Field
|
|
|
|
class Joke(BaseModel):
|
|
'''Joke to tell user.'''
|
|
|
|
setup: str = Field(description="The setup of the joke")
|
|
punchline: str = Field(description="The punchline to the joke")
|
|
rating: Optional[int] = Field(description="How funny the joke is, from 1 to 10")
|
|
|
|
structured_llm = llm.with_structured_output(Joke)
|
|
structured_llm.invoke("Tell me a joke about cats")
|
|
|
|
See ``ChatDeepSeek.with_structured_output()`` for more.
|
|
|
|
Token usage:
|
|
.. code-block:: python
|
|
|
|
ai_msg = llm.invoke(messages)
|
|
ai_msg.usage_metadata
|
|
|
|
.. code-block:: python
|
|
|
|
{'input_tokens': 28, 'output_tokens': 5, 'total_tokens': 33}
|
|
|
|
Response metadata
|
|
.. code-block:: python
|
|
|
|
ai_msg = llm.invoke(messages)
|
|
ai_msg.response_metadata
|
|
|
|
""" # noqa: E501
|
|
|
|
model_name: str = Field(alias="model")
|
|
"""The name of the model"""
|
|
api_key: Optional[SecretStr] = Field(
|
|
default_factory=secret_from_env("DEEPSEEK_API_KEY", default=None)
|
|
)
|
|
"""DeepSeek API key"""
|
|
api_base: str = Field(
|
|
default_factory=from_env("DEEPSEEK_API_BASE", default=DEFAULT_API_BASE)
|
|
)
|
|
"""DeepSeek API base URL"""
|
|
|
|
model_config = ConfigDict(populate_by_name=True)
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of chat model."""
|
|
return "chat-deepseek"
|
|
|
|
@property
|
|
def lc_secrets(self) -> Dict[str, str]:
|
|
"""A map of constructor argument names to secret ids."""
|
|
return {"api_key": "DEEPSEEK_API_KEY"}
|
|
|
|
@model_validator(mode="after")
|
|
def validate_environment(self) -> Self:
|
|
if self.api_base == DEFAULT_API_BASE and not (
|
|
self.api_key and self.api_key.get_secret_value()
|
|
):
|
|
raise ValueError("If using default api base, DEEPSEEK_API_KEY must be set.")
|
|
client_params: dict = {
|
|
k: v
|
|
for k, v in {
|
|
"api_key": self.api_key.get_secret_value() if self.api_key else None,
|
|
"base_url": self.api_base,
|
|
"timeout": self.request_timeout,
|
|
"max_retries": self.max_retries,
|
|
"default_headers": self.default_headers,
|
|
"default_query": self.default_query,
|
|
}.items()
|
|
if v is not None
|
|
}
|
|
|
|
if not (self.client or None):
|
|
sync_specific: dict = {"http_client": self.http_client}
|
|
self.client = openai.OpenAI(
|
|
**client_params, **sync_specific
|
|
).chat.completions
|
|
if not (self.async_client or None):
|
|
async_specific: dict = {"http_client": self.http_async_client}
|
|
self.async_client = openai.AsyncOpenAI(
|
|
**client_params, **async_specific
|
|
).chat.completions
|
|
return self
|
|
|
|
def _create_chat_result(
|
|
self,
|
|
response: Union[dict, openai.BaseModel],
|
|
generation_info: Optional[Dict] = None,
|
|
) -> ChatResult:
|
|
rtn = super()._create_chat_result(response, generation_info)
|
|
|
|
if not isinstance(response, openai.BaseModel):
|
|
return rtn
|
|
|
|
if hasattr(response.choices[0].message, "reasoning_content"): # type: ignore
|
|
rtn.generations[0].message.additional_kwargs["reasoning_content"] = (
|
|
response.choices[0].message.reasoning_content # type: ignore
|
|
)
|
|
|
|
return rtn
|