mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-08 16:48:49 +00:00
- **Description:** Fix some chat models docs, include: - ChatBaichuan - QianfanChatEndpoint - ChatSparkLLM - ChatZhipuAI
642 lines
22 KiB
Python
642 lines
22 KiB
Python
import json
|
|
import logging
|
|
from contextlib import asynccontextmanager
|
|
from typing import (
|
|
Any,
|
|
AsyncIterator,
|
|
Callable,
|
|
Dict,
|
|
Iterator,
|
|
List,
|
|
Mapping,
|
|
Optional,
|
|
Sequence,
|
|
Type,
|
|
Union,
|
|
)
|
|
|
|
import requests
|
|
from langchain_core.callbacks import (
|
|
AsyncCallbackManagerForLLMRun,
|
|
CallbackManagerForLLMRun,
|
|
)
|
|
from langchain_core.language_models import LanguageModelInput
|
|
from langchain_core.language_models.chat_models import (
|
|
BaseChatModel,
|
|
agenerate_from_stream,
|
|
generate_from_stream,
|
|
)
|
|
from langchain_core.messages import (
|
|
AIMessage,
|
|
AIMessageChunk,
|
|
BaseMessage,
|
|
BaseMessageChunk,
|
|
ChatMessage,
|
|
ChatMessageChunk,
|
|
HumanMessage,
|
|
HumanMessageChunk,
|
|
SystemMessage,
|
|
SystemMessageChunk,
|
|
ToolMessage,
|
|
)
|
|
from langchain_core.output_parsers.openai_tools import (
|
|
make_invalid_tool_call,
|
|
parse_tool_call,
|
|
)
|
|
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
|
from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr, root_validator
|
|
from langchain_core.runnables import Runnable
|
|
from langchain_core.tools import BaseTool
|
|
from langchain_core.utils import (
|
|
convert_to_secret_str,
|
|
get_from_dict_or_env,
|
|
get_pydantic_field_names,
|
|
)
|
|
from langchain_core.utils.function_calling import convert_to_openai_tool
|
|
|
|
from langchain_community.chat_models.llamacpp import (
|
|
_lc_invalid_tool_call_to_openai_tool_call,
|
|
_lc_tool_call_to_openai_tool_call,
|
|
)
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
DEFAULT_API_BASE = "https://api.baichuan-ai.com/v1/chat/completions"
|
|
|
|
|
|
def _convert_message_to_dict(message: BaseMessage) -> dict:
|
|
message_dict: Dict[str, Any]
|
|
content = message.content
|
|
if isinstance(message, ChatMessage):
|
|
message_dict = {"role": message.role, "content": content}
|
|
elif isinstance(message, HumanMessage):
|
|
message_dict = {"role": "user", "content": content}
|
|
elif isinstance(message, AIMessage):
|
|
message_dict = {"role": "assistant", "content": content}
|
|
if "tool_calls" in message.additional_kwargs:
|
|
message_dict["tool_calls"] = message.additional_kwargs["tool_calls"]
|
|
|
|
elif message.tool_calls or message.invalid_tool_calls:
|
|
message_dict["tool_calls"] = [
|
|
_lc_tool_call_to_openai_tool_call(tc) for tc in message.tool_calls
|
|
] + [
|
|
_lc_invalid_tool_call_to_openai_tool_call(tc)
|
|
for tc in message.invalid_tool_calls
|
|
]
|
|
elif isinstance(message, ToolMessage):
|
|
message_dict = {
|
|
"role": "tool",
|
|
"tool_call_id": message.tool_call_id,
|
|
"content": content,
|
|
"name": message.name or message.additional_kwargs.get("name"),
|
|
}
|
|
|
|
elif isinstance(message, SystemMessage):
|
|
message_dict = {"role": "system", "content": content}
|
|
else:
|
|
raise TypeError(f"Got unknown type {message}")
|
|
|
|
return message_dict
|
|
|
|
|
|
def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage:
|
|
role = _dict["role"]
|
|
content = _dict.get("content", "")
|
|
if role == "user":
|
|
return HumanMessage(content=content)
|
|
elif role == "assistant":
|
|
tool_calls = []
|
|
invalid_tool_calls = []
|
|
additional_kwargs = {}
|
|
|
|
if raw_tool_calls := _dict.get("tool_calls"):
|
|
additional_kwargs["tool_calls"] = raw_tool_calls
|
|
for raw_tool_call in raw_tool_calls:
|
|
try:
|
|
tool_calls.append(parse_tool_call(raw_tool_call, return_id=True))
|
|
except Exception as e:
|
|
invalid_tool_calls.append(
|
|
make_invalid_tool_call(raw_tool_call, str(e))
|
|
)
|
|
|
|
return AIMessage(
|
|
content=content,
|
|
additional_kwargs=additional_kwargs,
|
|
tool_calls=tool_calls, # type: ignore[arg-type]
|
|
invalid_tool_calls=invalid_tool_calls,
|
|
)
|
|
elif role == "tool":
|
|
additional_kwargs = {}
|
|
if "name" in _dict:
|
|
additional_kwargs["name"] = _dict["name"]
|
|
return ToolMessage(
|
|
content=content,
|
|
tool_call_id=_dict.get("tool_call_id"), # type: ignore[arg-type]
|
|
additional_kwargs=additional_kwargs,
|
|
)
|
|
elif role == "system":
|
|
return SystemMessage(content=content)
|
|
else:
|
|
return ChatMessage(content=content, role=role)
|
|
|
|
|
|
def _convert_delta_to_message_chunk(
|
|
_dict: Mapping[str, Any], default_class: Type[BaseMessageChunk]
|
|
) -> BaseMessageChunk:
|
|
role = _dict.get("role")
|
|
content = _dict.get("content") or ""
|
|
|
|
if role == "user" or default_class == HumanMessageChunk:
|
|
return HumanMessageChunk(content=content)
|
|
elif role == "assistant" or default_class == AIMessageChunk:
|
|
return AIMessageChunk(content=content)
|
|
elif role == "system" or default_class == SystemMessageChunk:
|
|
return SystemMessageChunk(content=content)
|
|
elif role or default_class == ChatMessageChunk:
|
|
return ChatMessageChunk(content=content, role=role) # type: ignore[arg-type]
|
|
else:
|
|
return default_class(content=content) # type: ignore[call-arg]
|
|
|
|
|
|
@asynccontextmanager
|
|
async def aconnect_httpx_sse(
|
|
client: Any, method: str, url: str, **kwargs: Any
|
|
) -> AsyncIterator:
|
|
"""Async context manager for connecting to an SSE stream.
|
|
|
|
Args:
|
|
client: The httpx client.
|
|
method: The HTTP method.
|
|
url: The URL to connect to.
|
|
kwargs: Additional keyword arguments to pass to the client.
|
|
|
|
Yields:
|
|
An EventSource object.
|
|
"""
|
|
from httpx_sse import EventSource
|
|
|
|
async with client.stream(method, url, **kwargs) as response:
|
|
yield EventSource(response)
|
|
|
|
|
|
class ChatBaichuan(BaseChatModel):
|
|
"""Baichuan chat model integration.
|
|
|
|
Setup:
|
|
To use, you should have the environment variable``BAICHUAN_API_KEY`` set with
|
|
your API KEY.
|
|
|
|
.. code-block:: bash
|
|
|
|
export BAICHUAN_API_KEY="your-api-key"
|
|
|
|
Key init args — completion params:
|
|
model: Optional[str]
|
|
Name of Baichuan model to use.
|
|
max_tokens: Optional[int]
|
|
Max number of tokens to generate.
|
|
streaming: Optional[bool]
|
|
Whether to stream the results or not.
|
|
temperature: Optional[float]
|
|
Sampling temperature.
|
|
top_p: Optional[float]
|
|
What probability mass to use.
|
|
top_k: Optional[int]
|
|
What search sampling control to use.
|
|
|
|
Key init args — client params:
|
|
api_key: Optional[str]
|
|
Baichuan API key. If not passed in will be read from env var BAICHUAN_API_KEY.
|
|
base_url: Optional[str]
|
|
Base URL for API requests.
|
|
|
|
See full list of supported init args and their descriptions in the params section.
|
|
|
|
Instantiate:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.chat_models import ChatBaichuan
|
|
|
|
chat = ChatBaichuan(
|
|
api_key=api_key,
|
|
model='Baichuan4',
|
|
# temperature=...,
|
|
# other params...
|
|
)
|
|
|
|
Invoke:
|
|
.. code-block:: python
|
|
|
|
messages = [
|
|
("system", "你是一名专业的翻译家,可以将用户的中文翻译为英文。"),
|
|
("human", "我喜欢编程。"),
|
|
]
|
|
chat.invoke(messages)
|
|
|
|
.. code-block:: python
|
|
|
|
AIMessage(
|
|
content='I enjoy programming.',
|
|
response_metadata={
|
|
'token_usage': {
|
|
'prompt_tokens': 93,
|
|
'completion_tokens': 5,
|
|
'total_tokens': 98
|
|
},
|
|
'model': 'Baichuan4'
|
|
},
|
|
id='run-944ff552-6a93-44cf-a861-4e4d849746f9-0'
|
|
)
|
|
|
|
Stream:
|
|
.. code-block:: python
|
|
|
|
for chunk in chat.stream(messages):
|
|
print(chunk)
|
|
|
|
.. code-block:: python
|
|
|
|
content='I' id='run-f99fcd6f-dd31-46d5-be8f-0b6a22bf77d8'
|
|
content=' enjoy programming.' id='run-f99fcd6f-dd31-46d5-be8f-0b6a22bf77d8
|
|
|
|
.. code-block:: python
|
|
|
|
stream = chat.stream(messages)
|
|
full = next(stream)
|
|
for chunk in stream:
|
|
full += chunk
|
|
full
|
|
|
|
.. code-block:: python
|
|
|
|
AIMessageChunk(
|
|
content='I like programming.',
|
|
id='run-74689970-dc31-461d-b729-3b6aa93508d2'
|
|
)
|
|
|
|
Async:
|
|
.. code-block:: python
|
|
|
|
await chat.ainvoke(messages)
|
|
|
|
# stream
|
|
# async for chunk in chat.astream(messages):
|
|
# print(chunk)
|
|
|
|
# batch
|
|
# await chat.abatch([messages])
|
|
|
|
.. code-block:: python
|
|
|
|
AIMessage(
|
|
content='I enjoy programming.',
|
|
response_metadata={
|
|
'token_usage': {
|
|
'prompt_tokens': 93,
|
|
'completion_tokens': 5,
|
|
'total_tokens': 98
|
|
},
|
|
'model': 'Baichuan4'
|
|
},
|
|
id='run-952509ed-9154-4ff9-b187-e616d7ddfbba-0'
|
|
)
|
|
Tool calling:
|
|
|
|
.. code-block:: python
|
|
class get_current_weather(BaseModel):
|
|
'''Get current weather.'''
|
|
|
|
location: str = Field('City or province, such as Shanghai')
|
|
|
|
|
|
llm_with_tools = ChatBaichuan(model='Baichuan3-Turbo').bind_tools([get_current_weather])
|
|
llm_with_tools.invoke('How is the weather today?')
|
|
|
|
.. code-block:: python
|
|
|
|
[{'name': 'get_current_weather',
|
|
'args': {'location': 'New York'},
|
|
'id': '3951017OF8doB0A',
|
|
'type': 'tool_call'}]
|
|
|
|
Response metadata
|
|
.. code-block:: python
|
|
|
|
ai_msg = chat.invoke(messages)
|
|
ai_msg.response_metadata
|
|
|
|
.. code-block:: python
|
|
|
|
{
|
|
'token_usage': {
|
|
'prompt_tokens': 93,
|
|
'completion_tokens': 5,
|
|
'total_tokens': 98
|
|
},
|
|
'model': 'Baichuan4'
|
|
}
|
|
|
|
""" # noqa: E501
|
|
|
|
@property
|
|
def lc_secrets(self) -> Dict[str, str]:
|
|
return {
|
|
"baichuan_api_key": "BAICHUAN_API_KEY",
|
|
}
|
|
|
|
@property
|
|
def lc_serializable(self) -> bool:
|
|
return True
|
|
|
|
baichuan_api_base: str = Field(default=DEFAULT_API_BASE, alias="base_url")
|
|
"""Baichuan custom endpoints"""
|
|
baichuan_api_key: SecretStr = Field(alias="api_key")
|
|
"""Baichuan API Key"""
|
|
baichuan_secret_key: Optional[SecretStr] = None
|
|
"""[DEPRECATED, keeping it for for backward compatibility] Baichuan Secret Key"""
|
|
streaming: bool = False
|
|
"""Whether to stream the results or not."""
|
|
max_tokens: Optional[int] = None
|
|
"""Maximum number of tokens to generate."""
|
|
request_timeout: int = Field(default=60, alias="timeout")
|
|
"""request timeout for chat http requests"""
|
|
model: str = "Baichuan2-Turbo-192K"
|
|
"""model name of Baichuan, default is `Baichuan2-Turbo-192K`,
|
|
other options include `Baichuan2-Turbo`"""
|
|
temperature: Optional[float] = Field(default=0.3)
|
|
"""What sampling temperature to use."""
|
|
top_k: int = 5
|
|
"""What search sampling control to use."""
|
|
top_p: float = 0.85
|
|
"""What probability mass to use."""
|
|
with_search_enhance: bool = False
|
|
"""[DEPRECATED, keeping it for for backward compatibility],
|
|
Whether to use search enhance, default is False."""
|
|
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
|
"""Holds any model parameters valid for API call not explicitly specified."""
|
|
|
|
class Config:
|
|
allow_population_by_field_name = True
|
|
|
|
@root_validator(pre=True)
|
|
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
|
"""Build extra kwargs from additional params that were passed in."""
|
|
all_required_field_names = get_pydantic_field_names(cls)
|
|
extra = values.get("model_kwargs", {})
|
|
for field_name in list(values):
|
|
if field_name in extra:
|
|
raise ValueError(f"Found {field_name} supplied twice.")
|
|
if field_name not in all_required_field_names:
|
|
logger.warning(
|
|
f"""WARNING! {field_name} is not default parameter.
|
|
{field_name} was transferred to model_kwargs.
|
|
Please confirm that {field_name} is what you intended."""
|
|
)
|
|
extra[field_name] = values.pop(field_name)
|
|
|
|
invalid_model_kwargs = all_required_field_names.intersection(extra.keys())
|
|
if invalid_model_kwargs:
|
|
raise ValueError(
|
|
f"Parameters {invalid_model_kwargs} should be specified explicitly. "
|
|
f"Instead they were passed in as part of `model_kwargs` parameter."
|
|
)
|
|
|
|
values["model_kwargs"] = extra
|
|
return values
|
|
|
|
@root_validator(pre=True)
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
values["baichuan_api_base"] = get_from_dict_or_env(
|
|
values,
|
|
"baichuan_api_base",
|
|
"BAICHUAN_API_BASE",
|
|
DEFAULT_API_BASE,
|
|
)
|
|
values["baichuan_api_key"] = convert_to_secret_str(
|
|
get_from_dict_or_env(
|
|
values,
|
|
["baichuan_api_key", "api_key"],
|
|
"BAICHUAN_API_KEY",
|
|
)
|
|
)
|
|
return values
|
|
|
|
@property
|
|
def _default_params(self) -> Dict[str, Any]:
|
|
"""Get the default parameters for calling Baichuan API."""
|
|
normal_params = {
|
|
"model": self.model,
|
|
"temperature": self.temperature,
|
|
"top_p": self.top_p,
|
|
"top_k": self.top_k,
|
|
"stream": self.streaming,
|
|
"max_tokens": self.max_tokens,
|
|
}
|
|
|
|
return {**normal_params, **self.model_kwargs}
|
|
|
|
def _generate(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> ChatResult:
|
|
if self.streaming:
|
|
stream_iter = self._stream(
|
|
messages=messages, stop=stop, run_manager=run_manager, **kwargs
|
|
)
|
|
return generate_from_stream(stream_iter)
|
|
|
|
res = self._chat(messages, **kwargs)
|
|
if res.status_code != 200:
|
|
raise ValueError(f"Error from Baichuan api response: {res}")
|
|
response = res.json()
|
|
return self._create_chat_result(response)
|
|
|
|
def _stream(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> Iterator[ChatGenerationChunk]:
|
|
res = self._chat(messages, stream=True, **kwargs)
|
|
if res.status_code != 200:
|
|
raise ValueError(f"Error from Baichuan api response: {res}")
|
|
default_chunk_class = AIMessageChunk
|
|
for chunk in res.iter_lines():
|
|
chunk = chunk.decode("utf-8").strip("\r\n")
|
|
parts = chunk.split("data: ", 1)
|
|
chunk = parts[1] if len(parts) > 1 else None
|
|
if chunk is None:
|
|
continue
|
|
if chunk == "[DONE]":
|
|
break
|
|
response = json.loads(chunk)
|
|
for m in response.get("choices"):
|
|
chunk = _convert_delta_to_message_chunk(
|
|
m.get("delta"), default_chunk_class
|
|
)
|
|
default_chunk_class = chunk.__class__
|
|
cg_chunk = ChatGenerationChunk(message=chunk)
|
|
if run_manager:
|
|
run_manager.on_llm_new_token(chunk.content, chunk=cg_chunk)
|
|
yield cg_chunk
|
|
|
|
async def _agenerate(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
stream: Optional[bool] = None,
|
|
**kwargs: Any,
|
|
) -> ChatResult:
|
|
should_stream = stream if stream is not None else self.streaming
|
|
if should_stream:
|
|
stream_iter = self._astream(
|
|
messages, stop=stop, run_manager=run_manager, **kwargs
|
|
)
|
|
return await agenerate_from_stream(stream_iter)
|
|
|
|
headers = self._create_headers_parameters(**kwargs)
|
|
payload = self._create_payload_parameters(messages, **kwargs)
|
|
|
|
import httpx
|
|
|
|
async with httpx.AsyncClient(
|
|
headers=headers, timeout=self.request_timeout
|
|
) as client:
|
|
response = await client.post(self.baichuan_api_base, json=payload)
|
|
response.raise_for_status()
|
|
return self._create_chat_result(response.json())
|
|
|
|
async def _astream(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> AsyncIterator[ChatGenerationChunk]:
|
|
headers = self._create_headers_parameters(**kwargs)
|
|
payload = self._create_payload_parameters(messages, stream=True, **kwargs)
|
|
import httpx
|
|
|
|
async with httpx.AsyncClient(
|
|
headers=headers, timeout=self.request_timeout
|
|
) as client:
|
|
async with aconnect_httpx_sse(
|
|
client, "POST", self.baichuan_api_base, json=payload
|
|
) as event_source:
|
|
async for sse in event_source.aiter_sse():
|
|
chunk = json.loads(sse.data)
|
|
if len(chunk["choices"]) == 0:
|
|
continue
|
|
choice = chunk["choices"][0]
|
|
chunk = _convert_delta_to_message_chunk(
|
|
choice["delta"], AIMessageChunk
|
|
)
|
|
finish_reason = choice.get("finish_reason", None)
|
|
|
|
generation_info = (
|
|
{"finish_reason": finish_reason}
|
|
if finish_reason is not None
|
|
else None
|
|
)
|
|
chunk = ChatGenerationChunk(
|
|
message=chunk, generation_info=generation_info
|
|
)
|
|
if run_manager:
|
|
await run_manager.on_llm_new_token(chunk.text, chunk=chunk)
|
|
yield chunk
|
|
if finish_reason is not None:
|
|
break
|
|
|
|
def _chat(self, messages: List[BaseMessage], **kwargs: Any) -> requests.Response:
|
|
payload = self._create_payload_parameters(messages, **kwargs)
|
|
url = self.baichuan_api_base
|
|
headers = self._create_headers_parameters(**kwargs)
|
|
|
|
res = requests.post(
|
|
url=url,
|
|
timeout=self.request_timeout,
|
|
headers=headers,
|
|
json=payload,
|
|
stream=self.streaming,
|
|
)
|
|
return res
|
|
|
|
def _create_payload_parameters( # type: ignore[no-untyped-def]
|
|
self, messages: List[BaseMessage], **kwargs
|
|
) -> Dict[str, Any]:
|
|
parameters = {**self._default_params, **kwargs}
|
|
temperature = parameters.pop("temperature", 0.3)
|
|
top_k = parameters.pop("top_k", 5)
|
|
top_p = parameters.pop("top_p", 0.85)
|
|
model = parameters.pop("model")
|
|
with_search_enhance = parameters.pop("with_search_enhance", False)
|
|
stream = parameters.pop("stream", False)
|
|
tools = parameters.pop("tools", [])
|
|
|
|
payload = {
|
|
"model": model,
|
|
"messages": [_convert_message_to_dict(m) for m in messages],
|
|
"top_k": top_k,
|
|
"top_p": top_p,
|
|
"temperature": temperature,
|
|
"with_search_enhance": with_search_enhance,
|
|
"stream": stream,
|
|
"tools": tools,
|
|
}
|
|
|
|
return payload
|
|
|
|
def _create_headers_parameters(self, **kwargs) -> Dict[str, Any]: # type: ignore[no-untyped-def]
|
|
parameters = {**self._default_params, **kwargs}
|
|
default_headers = parameters.pop("headers", {})
|
|
api_key = ""
|
|
if self.baichuan_api_key:
|
|
api_key = self.baichuan_api_key.get_secret_value()
|
|
|
|
headers = {
|
|
"Content-Type": "application/json",
|
|
"Authorization": f"Bearer {api_key}",
|
|
**default_headers,
|
|
}
|
|
return headers
|
|
|
|
def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult:
|
|
generations = []
|
|
for c in response["choices"]:
|
|
message = _convert_dict_to_message(c["message"])
|
|
gen = ChatGeneration(message=message)
|
|
generations.append(gen)
|
|
|
|
token_usage = response["usage"]
|
|
llm_output = {"token_usage": token_usage, "model": self.model}
|
|
return ChatResult(generations=generations, llm_output=llm_output)
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
return "baichuan-chat"
|
|
|
|
def bind_tools(
|
|
self,
|
|
tools: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]],
|
|
**kwargs: Any,
|
|
) -> Runnable[LanguageModelInput, BaseMessage]:
|
|
"""Bind tool-like objects to this chat model.
|
|
|
|
Args:
|
|
tools: A list of tool definitions to bind to this chat model.
|
|
Can be a dictionary, pydantic model, callable, or BaseTool.
|
|
Pydantic
|
|
models, callables, and BaseTools will be automatically converted to
|
|
their schema dictionary representation.
|
|
**kwargs: Any additional parameters to pass to the
|
|
:class:`~langchain.runnable.Runnable` constructor.
|
|
"""
|
|
|
|
formatted_tools = [convert_to_openai_tool(tool) for tool in tools]
|
|
return super().bind(tools=formatted_tools, **kwargs)
|