1
0
mirror of https://github.com/hwchase17/langchain.git synced 2025-09-22 19:09:57 +00:00
Files
Eugene Yurtsev bf5193bb99 community[patch]: Upgrade pydantic extra ()
Upgrade to using a literal for specifying the extra which is the
recommended approach in pydantic 2.

This works correctly also in pydantic v1.

```python
from pydantic.v1 import BaseModel

class Foo(BaseModel, extra="forbid"):
    x: int

Foo(x=5, y=1)
```

And 


```python
from pydantic.v1 import BaseModel

class Foo(BaseModel):
    x: int

    class Config:
      extra = "forbid"

Foo(x=5, y=1)
```


## Enum -> literal using grit pattern:

```
engine marzano(0.1)
language python
or {
    `extra=Extra.allow` => `extra="allow"`,
    `extra=Extra.forbid` => `extra="forbid"`,
    `extra=Extra.ignore` => `extra="ignore"`
}
```

Resorted attributes in config and removed doc-string in case we will
need to deal with going back and forth between pydantic v1 and v2 during
the 0.3 release. (This will reduce merge conflicts.)


## Sort attributes in Config:

```
engine marzano(0.1)
language python


function sort($values) js {
    return $values.text.split(',').sort().join("\n");
}


class_definition($name, $body) as $C where {
    $name <: `Config`,
    $body <: block($statements),
    $values = [],
    $statements <: some bubble($values) assignment() as $A where {
        $values += $A
    },
    $body => sort($values),
}

```
2024-08-08 17:20:39 +00:00

97 lines
3.3 KiB
Python

import logging
import time
from typing import Any, List
import requests
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel
logger = logging.getLogger(__name__)
class OVHCloudEmbeddings(BaseModel, Embeddings):
"""
OVHcloud AI Endpoints Embeddings.
"""
""" OVHcloud AI Endpoints Access Token"""
access_token: str = ""
""" OVHcloud AI Endpoints model name for embeddings generation"""
model_name: str = ""
""" OVHcloud AI Endpoints region"""
region: str = "kepler"
class Config:
extra = "forbid"
def __init__(self, **kwargs: Any):
super().__init__(**kwargs)
if self.access_token == "":
raise ValueError("Access token is required for OVHCloud embeddings.")
if self.model_name == "":
raise ValueError("Model name is required for OVHCloud embeddings.")
if self.region == "":
raise ValueError("Region is required for OVHCloud embeddings.")
def _generate_embedding(self, text: str) -> List[float]:
"""Generate embeddings from OVHCLOUD AIE.
Args:
text (str): The text to embed.
Returns:
List[float]: Embeddings for the text.
"""
headers = {
"content-type": "text/plain",
"Authorization": f"Bearer {self.access_token}",
}
session = requests.session()
while True:
response = session.post(
f"https://{self.model_name}.endpoints.{self.region}.ai.cloud.ovh.net/api/text2vec",
headers=headers,
data=text,
)
if response.status_code != 200:
if response.status_code == 429:
"""Rate limit exceeded, wait for reset"""
reset_time = int(response.headers.get("RateLimit-Reset", 0))
logger.info("Rate limit exceeded. Waiting %d seconds.", reset_time)
if reset_time > 0:
time.sleep(reset_time)
continue
else:
"""Rate limit reset time has passed, retry immediately"""
continue
if response.status_code == 401:
""" Unauthorized, retry with new token """
raise ValueError("Unauthorized, retry with new token")
""" Handle other non-200 status codes """
raise ValueError(
"Request failed with status code: {status_code}, {text}".format(
status_code=response.status_code, text=response.text
)
)
return response.json()
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Create a retry decorator for PremAIEmbeddings.
Args:
texts (List[str]): The list of texts to embed.
Returns:
List[List[float]]: List of embeddings, one for each input text.
"""
return [self._generate_embedding(text) for text in texts]
def embed_query(self, text: str) -> List[float]:
"""Embed a single query text.
Args:
text (str): The text to embed.
Returns:
List[float]: Embeddings for the text.
"""
return self._generate_embedding(text)