mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-10 17:46:15 +00:00
Upgrade to using a literal for specifying the extra which is the recommended approach in pydantic 2. This works correctly also in pydantic v1. ```python from pydantic.v1 import BaseModel class Foo(BaseModel, extra="forbid"): x: int Foo(x=5, y=1) ``` And ```python from pydantic.v1 import BaseModel class Foo(BaseModel): x: int class Config: extra = "forbid" Foo(x=5, y=1) ``` ## Enum -> literal using grit pattern: ``` engine marzano(0.1) language python or { `extra=Extra.allow` => `extra="allow"`, `extra=Extra.forbid` => `extra="forbid"`, `extra=Extra.ignore` => `extra="ignore"` } ``` Resorted attributes in config and removed doc-string in case we will need to deal with going back and forth between pydantic v1 and v2 during the 0.3 release. (This will reduce merge conflicts.) ## Sort attributes in Config: ``` engine marzano(0.1) language python function sort($values) js { return $values.text.split(',').sort().join("\n"); } class_definition($name, $body) as $C where { $name <: `Config`, $body <: block($statements), $values = [], $statements <: some bubble($values) assignment() as $A where { $values += $A }, $body => sort($values), } ```
126 lines
4.0 KiB
Python
126 lines
4.0 KiB
Python
from __future__ import annotations
|
|
|
|
import concurrent.futures
|
|
from typing import Any, Iterable, List, Optional
|
|
|
|
import numpy as np
|
|
from langchain_core.callbacks import CallbackManagerForRetrieverRun
|
|
from langchain_core.documents import Document
|
|
from langchain_core.embeddings import Embeddings
|
|
from langchain_core.retrievers import BaseRetriever
|
|
|
|
|
|
def create_index(contexts: List[str], embeddings: Embeddings) -> np.ndarray:
|
|
"""
|
|
Create an index of embeddings for a list of contexts.
|
|
|
|
Args:
|
|
contexts: List of contexts to embed.
|
|
embeddings: Embeddings model to use.
|
|
|
|
Returns:
|
|
Index of embeddings.
|
|
"""
|
|
with concurrent.futures.ThreadPoolExecutor() as executor:
|
|
return np.array(list(executor.map(embeddings.embed_query, contexts)))
|
|
|
|
|
|
class SVMRetriever(BaseRetriever):
|
|
"""`SVM` retriever.
|
|
|
|
Largely based on
|
|
https://github.com/karpathy/randomfun/blob/master/knn_vs_svm.ipynb
|
|
"""
|
|
|
|
embeddings: Embeddings
|
|
"""Embeddings model to use."""
|
|
index: Any
|
|
"""Index of embeddings."""
|
|
texts: List[str]
|
|
"""List of texts to index."""
|
|
metadatas: Optional[List[dict]] = None
|
|
"""List of metadatas corresponding with each text."""
|
|
k: int = 4
|
|
"""Number of results to return."""
|
|
relevancy_threshold: Optional[float] = None
|
|
"""Threshold for relevancy."""
|
|
|
|
class Config:
|
|
arbitrary_types_allowed = True
|
|
|
|
@classmethod
|
|
def from_texts(
|
|
cls,
|
|
texts: List[str],
|
|
embeddings: Embeddings,
|
|
metadatas: Optional[List[dict]] = None,
|
|
**kwargs: Any,
|
|
) -> SVMRetriever:
|
|
index = create_index(texts, embeddings)
|
|
return cls(
|
|
embeddings=embeddings,
|
|
index=index,
|
|
texts=texts,
|
|
metadatas=metadatas,
|
|
**kwargs,
|
|
)
|
|
|
|
@classmethod
|
|
def from_documents(
|
|
cls,
|
|
documents: Iterable[Document],
|
|
embeddings: Embeddings,
|
|
**kwargs: Any,
|
|
) -> SVMRetriever:
|
|
texts, metadatas = zip(*((d.page_content, d.metadata) for d in documents))
|
|
return cls.from_texts(
|
|
texts=texts, embeddings=embeddings, metadatas=metadatas, **kwargs
|
|
)
|
|
|
|
def _get_relevant_documents(
|
|
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
|
|
) -> List[Document]:
|
|
try:
|
|
from sklearn import svm
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import scikit-learn, please install with `pip install "
|
|
"scikit-learn`."
|
|
)
|
|
|
|
query_embeds = np.array(self.embeddings.embed_query(query))
|
|
x = np.concatenate([query_embeds[None, ...], self.index])
|
|
y = np.zeros(x.shape[0])
|
|
y[0] = 1
|
|
|
|
clf = svm.LinearSVC(
|
|
class_weight="balanced", verbose=False, max_iter=10000, tol=1e-6, C=0.1
|
|
)
|
|
clf.fit(x, y)
|
|
|
|
similarities = clf.decision_function(x)
|
|
sorted_ix = np.argsort(-similarities)
|
|
|
|
# svm.LinearSVC in scikit-learn is non-deterministic.
|
|
# if a text is the same as a query, there is no guarantee
|
|
# the query will be in the first index.
|
|
# this performs a simple swap, this works because anything
|
|
# left of the 0 should be equivalent.
|
|
zero_index = np.where(sorted_ix == 0)[0][0]
|
|
if zero_index != 0:
|
|
sorted_ix[0], sorted_ix[zero_index] = sorted_ix[zero_index], sorted_ix[0]
|
|
|
|
denominator = np.max(similarities) - np.min(similarities) + 1e-6
|
|
normalized_similarities = (similarities - np.min(similarities)) / denominator
|
|
|
|
top_k_results = []
|
|
for row in sorted_ix[1 : self.k + 1]:
|
|
if (
|
|
self.relevancy_threshold is None
|
|
or normalized_similarities[row] >= self.relevancy_threshold
|
|
):
|
|
metadata = self.metadatas[row - 1] if self.metadatas else {}
|
|
doc = Document(page_content=self.texts[row - 1], metadata=metadata)
|
|
top_k_results.append(doc)
|
|
return top_k_results
|