mirror of
https://github.com/hwchase17/langchain.git
synced 2025-08-24 03:52:08 +00:00
This adds `args_schema` member to `SearxSearchResults` tool. This member is already present in the `SearxSearchRun` tool in the same file. I was having `TypeError: Type is not JSON serializable: AsyncCallbackManagerForToolRun` being thrown in langserve playground when I was using `SearxSearchResults` tool as a part of chain there. This fixes the issue, so the error is not raised anymore. This is a example langserve app that was giving me the error, but it works properly after the proposed fix: ```python #!/usr/bin/env python from fastapi import FastAPI from langchain_core.prompts import ChatPromptTemplate from langchain_core.output_parsers import StrOutputParser from langchain_core.runnables import RunnablePassthrough from langchain_openai import ChatOpenAI from langchain_community.utilities import SearxSearchWrapper from langchain_community.tools.searx_search.tool import SearxSearchResults from langserve import add_routes template = """Answer the question based only on the following context: {context} Question: {question} """ prompt = ChatPromptTemplate.from_template(template) model = ChatOpenAI() s = SearxSearchWrapper(searx_host="http://localhost:8080") search = SearxSearchResults(wrapper=s) search_chain = ( {"context": search, "question": RunnablePassthrough()} | prompt | model | StrOutputParser() ) app = FastAPI() add_routes( app, search_chain, path="/chain", ) if __name__ == "__main__": import uvicorn uvicorn.run(app, host="localhost", port=8000) ```
85 lines
2.4 KiB
Python
85 lines
2.4 KiB
Python
"""Tool for the SearxNG search API."""
|
|
|
|
from typing import Optional, Type
|
|
|
|
from langchain_core.callbacks import (
|
|
AsyncCallbackManagerForToolRun,
|
|
CallbackManagerForToolRun,
|
|
)
|
|
from langchain_core.pydantic_v1 import BaseModel, Field
|
|
from langchain_core.tools import BaseTool
|
|
|
|
from langchain_community.utilities.searx_search import SearxSearchWrapper
|
|
|
|
|
|
class SearxSearchQueryInput(BaseModel):
|
|
"""Input for the SearxSearch tool."""
|
|
|
|
query: str = Field(description="query to look up on searx")
|
|
|
|
|
|
class SearxSearchRun(BaseTool):
|
|
"""Tool that queries a Searx instance."""
|
|
|
|
name: str = "searx_search"
|
|
description: str = (
|
|
"A meta search engine."
|
|
"Useful for when you need to answer questions about current events."
|
|
"Input should be a search query."
|
|
)
|
|
wrapper: SearxSearchWrapper
|
|
kwargs: dict = Field(default_factory=dict)
|
|
args_schema: Type[BaseModel] = SearxSearchQueryInput
|
|
|
|
def _run(
|
|
self,
|
|
query: str,
|
|
run_manager: Optional[CallbackManagerForToolRun] = None,
|
|
) -> str:
|
|
"""Use the tool."""
|
|
return self.wrapper.run(query, **self.kwargs)
|
|
|
|
async def _arun(
|
|
self,
|
|
query: str,
|
|
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
|
|
) -> str:
|
|
"""Use the tool asynchronously."""
|
|
return await self.wrapper.arun(query, **self.kwargs)
|
|
|
|
|
|
class SearxSearchResults(BaseTool):
|
|
"""Tool that queries a Searx instance and gets back json."""
|
|
|
|
name: str = "searx_search_results"
|
|
description: str = (
|
|
"A meta search engine."
|
|
"Useful for when you need to answer questions about current events."
|
|
"Input should be a search query. Output is a JSON array of the query results"
|
|
)
|
|
wrapper: SearxSearchWrapper
|
|
num_results: int = 4
|
|
kwargs: dict = Field(default_factory=dict)
|
|
args_schema: Type[BaseModel] = SearxSearchQueryInput
|
|
|
|
class Config:
|
|
extra = "allow"
|
|
|
|
def _run(
|
|
self,
|
|
query: str,
|
|
run_manager: Optional[CallbackManagerForToolRun] = None,
|
|
) -> str:
|
|
"""Use the tool."""
|
|
return str(self.wrapper.results(query, self.num_results, **self.kwargs))
|
|
|
|
async def _arun(
|
|
self,
|
|
query: str,
|
|
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
|
|
) -> str:
|
|
"""Use the tool asynchronously."""
|
|
return (
|
|
await self.wrapper.aresults(query, self.num_results, **self.kwargs)
|
|
).__str__()
|