langchain/libs/community/langchain_community/tools/searx_search/tool.py
Fedor Nikolaev 2b15518c5f
community: add args_schema to SearxSearchResults tool (#25350)
This adds `args_schema` member to `SearxSearchResults` tool. This member
is already present in the `SearxSearchRun` tool in the same file.

I was having `TypeError: Type is not JSON serializable:
AsyncCallbackManagerForToolRun` being thrown in langserve playground
when I was using `SearxSearchResults` tool as a part of chain there.
This fixes the issue, so the error is not raised anymore.

This is a example langserve app that was giving me the error, but it
works properly after the proposed fix:
```python
#!/usr/bin/env python

from fastapi import FastAPI
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain_openai import ChatOpenAI
from langchain_community.utilities import SearxSearchWrapper
from langchain_community.tools.searx_search.tool import SearxSearchResults
from langserve import add_routes

template = """Answer the question based only on the following context:
{context}

Question: {question}
"""
prompt = ChatPromptTemplate.from_template(template)
model = ChatOpenAI()

s = SearxSearchWrapper(searx_host="http://localhost:8080")

search = SearxSearchResults(wrapper=s)

search_chain = (
    {"context": search, "question": RunnablePassthrough()}
    | prompt
    | model
    | StrOutputParser()
)

app = FastAPI()

add_routes(
    app,
    search_chain,
    path="/chain",
)

if __name__ == "__main__":
    import uvicorn

    uvicorn.run(app, host="localhost", port=8000)
```
2024-08-13 18:26:09 +00:00

85 lines
2.4 KiB
Python

"""Tool for the SearxNG search API."""
from typing import Optional, Type
from langchain_core.callbacks import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.tools import BaseTool
from langchain_community.utilities.searx_search import SearxSearchWrapper
class SearxSearchQueryInput(BaseModel):
"""Input for the SearxSearch tool."""
query: str = Field(description="query to look up on searx")
class SearxSearchRun(BaseTool):
"""Tool that queries a Searx instance."""
name: str = "searx_search"
description: str = (
"A meta search engine."
"Useful for when you need to answer questions about current events."
"Input should be a search query."
)
wrapper: SearxSearchWrapper
kwargs: dict = Field(default_factory=dict)
args_schema: Type[BaseModel] = SearxSearchQueryInput
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
return self.wrapper.run(query, **self.kwargs)
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool asynchronously."""
return await self.wrapper.arun(query, **self.kwargs)
class SearxSearchResults(BaseTool):
"""Tool that queries a Searx instance and gets back json."""
name: str = "searx_search_results"
description: str = (
"A meta search engine."
"Useful for when you need to answer questions about current events."
"Input should be a search query. Output is a JSON array of the query results"
)
wrapper: SearxSearchWrapper
num_results: int = 4
kwargs: dict = Field(default_factory=dict)
args_schema: Type[BaseModel] = SearxSearchQueryInput
class Config:
extra = "allow"
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
return str(self.wrapper.results(query, self.num_results, **self.kwargs))
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool asynchronously."""
return (
await self.wrapper.aresults(query, self.num_results, **self.kwargs)
).__str__()