mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-08 08:38:48 +00:00
```python """python scripts/update_mypy_ruff.py""" import glob import tomllib from pathlib import Path import toml import subprocess import re ROOT_DIR = Path(__file__).parents[1] def main(): for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True): print(path) with open(path, "rb") as f: pyproject = tomllib.load(f) try: pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = ( "^1.10" ) pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = ( "^0.5" ) except KeyError: continue with open(path, "w") as f: toml.dump(pyproject, f) cwd = "/".join(path.split("/")[:-1]) completed = subprocess.run( "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color", cwd=cwd, shell=True, capture_output=True, text=True, ) logs = completed.stdout.split("\n") to_ignore = {} for l in logs: if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l): path, line_no, error_type = re.match( "^(.*)\:(\d+)\: error:.*\[(.*)\]", l ).groups() if (path, line_no) in to_ignore: to_ignore[(path, line_no)].append(error_type) else: to_ignore[(path, line_no)] = [error_type] print(len(to_ignore)) for (error_path, line_no), error_types in to_ignore.items(): all_errors = ", ".join(error_types) full_path = f"{cwd}/{error_path}" try: with open(full_path, "r") as f: file_lines = f.readlines() except FileNotFoundError: continue file_lines[int(line_no) - 1] = ( file_lines[int(line_no) - 1][:-1] + f" # type: ignore[{all_errors}]\n" ) with open(full_path, "w") as f: f.write("".join(file_lines)) subprocess.run( "poetry run ruff format .; poetry run ruff --select I --fix .", cwd=cwd, shell=True, capture_output=True, text=True, ) if __name__ == "__main__": main() ```
97 lines
3.3 KiB
Python
97 lines
3.3 KiB
Python
"""Util that calls Outline."""
|
|
|
|
import logging
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
import requests
|
|
from langchain_core.documents import Document
|
|
from langchain_core.pydantic_v1 import BaseModel, root_validator
|
|
from langchain_core.utils import get_from_dict_or_env
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
OUTLINE_MAX_QUERY_LENGTH = 300
|
|
|
|
|
|
class OutlineAPIWrapper(BaseModel):
|
|
"""Wrapper around OutlineAPI.
|
|
|
|
This wrapper will use the Outline API to query the documents of your instance.
|
|
By default it will return the document content of the top-k results.
|
|
It limits the document content by doc_content_chars_max.
|
|
"""
|
|
|
|
top_k_results: int = 3
|
|
load_all_available_meta: bool = False
|
|
doc_content_chars_max: int = 4000
|
|
outline_instance_url: Optional[str] = None
|
|
outline_api_key: Optional[str] = None
|
|
outline_search_endpoint: str = "/api/documents.search"
|
|
|
|
@root_validator(pre=True)
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that instance url and api key exists in environment."""
|
|
outline_instance_url = get_from_dict_or_env(
|
|
values, "outline_instance_url", "OUTLINE_INSTANCE_URL"
|
|
)
|
|
values["outline_instance_url"] = outline_instance_url
|
|
|
|
outline_api_key = get_from_dict_or_env(
|
|
values, "outline_api_key", "OUTLINE_API_KEY"
|
|
)
|
|
values["outline_api_key"] = outline_api_key
|
|
|
|
return values
|
|
|
|
def _result_to_document(self, outline_res: Any) -> Document:
|
|
main_meta = {
|
|
"title": outline_res["document"]["title"],
|
|
"source": self.outline_instance_url + outline_res["document"]["url"],
|
|
}
|
|
add_meta = (
|
|
{
|
|
"id": outline_res["document"]["id"],
|
|
"ranking": outline_res["ranking"],
|
|
"collection_id": outline_res["document"]["collectionId"],
|
|
"parent_document_id": outline_res["document"]["parentDocumentId"],
|
|
"revision": outline_res["document"]["revision"],
|
|
"created_by": outline_res["document"]["createdBy"]["name"],
|
|
}
|
|
if self.load_all_available_meta
|
|
else {}
|
|
)
|
|
doc = Document(
|
|
page_content=outline_res["document"]["text"][: self.doc_content_chars_max],
|
|
metadata={
|
|
**main_meta,
|
|
**add_meta,
|
|
},
|
|
)
|
|
return doc
|
|
|
|
def _outline_api_query(self, query: str) -> List:
|
|
raw_result = requests.post(
|
|
f"{self.outline_instance_url}{self.outline_search_endpoint}",
|
|
data={"query": query, "limit": self.top_k_results},
|
|
headers={"Authorization": f"Bearer {self.outline_api_key}"},
|
|
)
|
|
|
|
if not raw_result.ok:
|
|
raise ValueError("Outline API returned an error: ", raw_result.text)
|
|
|
|
return raw_result.json()["data"]
|
|
|
|
def run(self, query: str) -> List[Document]:
|
|
"""
|
|
Run Outline search and get the document content plus the meta information.
|
|
|
|
Returns: a list of documents.
|
|
|
|
"""
|
|
results = self._outline_api_query(query[:OUTLINE_MAX_QUERY_LENGTH])
|
|
docs = []
|
|
for result in results[: self.top_k_results]:
|
|
if doc := self._result_to_document(result):
|
|
docs.append(doc)
|
|
return docs
|