mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-08 08:38:48 +00:00
```python """python scripts/update_mypy_ruff.py""" import glob import tomllib from pathlib import Path import toml import subprocess import re ROOT_DIR = Path(__file__).parents[1] def main(): for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True): print(path) with open(path, "rb") as f: pyproject = tomllib.load(f) try: pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = ( "^1.10" ) pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = ( "^0.5" ) except KeyError: continue with open(path, "w") as f: toml.dump(pyproject, f) cwd = "/".join(path.split("/")[:-1]) completed = subprocess.run( "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color", cwd=cwd, shell=True, capture_output=True, text=True, ) logs = completed.stdout.split("\n") to_ignore = {} for l in logs: if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l): path, line_no, error_type = re.match( "^(.*)\:(\d+)\: error:.*\[(.*)\]", l ).groups() if (path, line_no) in to_ignore: to_ignore[(path, line_no)].append(error_type) else: to_ignore[(path, line_no)] = [error_type] print(len(to_ignore)) for (error_path, line_no), error_types in to_ignore.items(): all_errors = ", ".join(error_types) full_path = f"{cwd}/{error_path}" try: with open(full_path, "r") as f: file_lines = f.readlines() except FileNotFoundError: continue file_lines[int(line_no) - 1] = ( file_lines[int(line_no) - 1][:-1] + f" # type: ignore[{all_errors}]\n" ) with open(full_path, "w") as f: f.write("".join(file_lines)) subprocess.run( "poetry run ruff format .; poetry run ruff --select I --fix .", cwd=cwd, shell=True, capture_output=True, text=True, ) if __name__ == "__main__": main() ```
52 lines
1.7 KiB
Python
52 lines
1.7 KiB
Python
"""Wrapper for Rememberizer APIs."""
|
|
|
|
from typing import Dict, List, Optional, cast
|
|
|
|
import requests
|
|
from langchain_core.documents import Document
|
|
from langchain_core.pydantic_v1 import BaseModel, root_validator
|
|
from langchain_core.utils import get_from_dict_or_env
|
|
|
|
|
|
class RememberizerAPIWrapper(BaseModel):
|
|
"""Wrapper for Rememberizer APIs."""
|
|
|
|
top_k_results: int = 10
|
|
rememberizer_api_key: Optional[str] = None
|
|
|
|
@root_validator(pre=True)
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that api key in environment."""
|
|
rememberizer_api_key = get_from_dict_or_env(
|
|
values, "rememberizer_api_key", "REMEMBERIZER_API_KEY"
|
|
)
|
|
values["rememberizer_api_key"] = rememberizer_api_key
|
|
|
|
return values
|
|
|
|
def search(self, query: str) -> dict:
|
|
"""Search for a query in the Rememberizer API."""
|
|
url = f"https://api.rememberizer.ai/api/v1/documents/search?q={query}&n={self.top_k_results}"
|
|
response = requests.get(
|
|
url, headers={"x-api-key": cast(str, self.rememberizer_api_key)}
|
|
)
|
|
data = response.json()
|
|
|
|
if response.status_code != 200:
|
|
raise ValueError(f"API Error: {data}")
|
|
|
|
matched_chunks = data.get("matched_chunks", [])
|
|
return matched_chunks
|
|
|
|
def load(self, query: str) -> List[Document]:
|
|
matched_chunks = self.search(query)
|
|
docs = []
|
|
for matched_chunk in matched_chunks:
|
|
docs.append(
|
|
Document(
|
|
page_content=matched_chunk["matched_content"],
|
|
metadata=matched_chunk["document"],
|
|
)
|
|
)
|
|
return docs
|