mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-08 00:28:47 +00:00
Upgrade to using a literal for specifying the extra which is the recommended approach in pydantic 2. This works correctly also in pydantic v1. ```python from pydantic.v1 import BaseModel class Foo(BaseModel, extra="forbid"): x: int Foo(x=5, y=1) ``` And ```python from pydantic.v1 import BaseModel class Foo(BaseModel): x: int class Config: extra = "forbid" Foo(x=5, y=1) ``` ## Enum -> literal using grit pattern: ``` engine marzano(0.1) language python or { `extra=Extra.allow` => `extra="allow"`, `extra=Extra.forbid` => `extra="forbid"`, `extra=Extra.ignore` => `extra="ignore"` } ``` Resorted attributes in config and removed doc-string in case we will need to deal with going back and forth between pydantic v1 and v2 during the 0.3 release. (This will reduce merge conflicts.) ## Sort attributes in Config: ``` engine marzano(0.1) language python function sort($values) js { return $values.text.split(',').sort().join("\n"); } class_definition($name, $body) as $C where { $name <: `Config`, $body <: block($statements), $values = [], $statements <: some bubble($values) assignment() as $A where { $values += $A }, $body => sort($values), } ```
63 lines
1.9 KiB
Python
63 lines
1.9 KiB
Python
"""Util that calls WolframAlpha."""
|
|
|
|
from typing import Any, Dict, Optional
|
|
|
|
from langchain_core.pydantic_v1 import BaseModel, root_validator
|
|
from langchain_core.utils import get_from_dict_or_env
|
|
|
|
|
|
class WolframAlphaAPIWrapper(BaseModel):
|
|
"""Wrapper for Wolfram Alpha.
|
|
|
|
Docs for using:
|
|
|
|
1. Go to wolfram alpha and sign up for a developer account
|
|
2. Create an app and get your APP ID
|
|
3. Save your APP ID into WOLFRAM_ALPHA_APPID env variable
|
|
4. pip install wolframalpha
|
|
|
|
"""
|
|
|
|
wolfram_client: Any #: :meta private:
|
|
wolfram_alpha_appid: Optional[str] = None
|
|
|
|
class Config:
|
|
extra = "forbid"
|
|
|
|
@root_validator(pre=True)
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that api key and python package exists in environment."""
|
|
wolfram_alpha_appid = get_from_dict_or_env(
|
|
values, "wolfram_alpha_appid", "WOLFRAM_ALPHA_APPID"
|
|
)
|
|
values["wolfram_alpha_appid"] = wolfram_alpha_appid
|
|
|
|
try:
|
|
import wolframalpha
|
|
|
|
except ImportError:
|
|
raise ImportError(
|
|
"wolframalpha is not installed. "
|
|
"Please install it with `pip install wolframalpha`"
|
|
)
|
|
client = wolframalpha.Client(wolfram_alpha_appid)
|
|
values["wolfram_client"] = client
|
|
|
|
return values
|
|
|
|
def run(self, query: str) -> str:
|
|
"""Run query through WolframAlpha and parse result."""
|
|
res = self.wolfram_client.query(query)
|
|
|
|
try:
|
|
assumption = next(res.pods).text
|
|
answer = next(res.results).text
|
|
except StopIteration:
|
|
return "Wolfram Alpha wasn't able to answer it"
|
|
|
|
if answer is None or answer == "":
|
|
# We don't want to return the assumption alone if answer is empty
|
|
return "No good Wolfram Alpha Result was found"
|
|
else:
|
|
return f"Assumption: {assumption} \nAnswer: {answer}"
|