mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-08 08:38:48 +00:00
**Description**
Fix the asyncronous methods to retrieve documents from AzureSearch
VectorStore. The previous changes from [this
commit](ffe6ca986e
)
create a similar code for the syncronous methods and the asyncronous
ones but the asyncronous client return an asyncronous iterator
"AsyncSearchItemPaged" as said in the issue #24740.
To solve this issue, the syncronous iterators in asyncronous methods
where changed to asyncronous iterators.
@chrislrobert said in [this
comment](https://github.com/langchain-ai/langchain/issues/24740#issuecomment-2254168302)
that there was a still a flaw due to `with` blocks that close the client
after each call. I removed this `with` blocks in the `async_client`
following the same pattern as the sync `client`.
In order to close up the connections, a __del__ method is included to
gently close up clients once the vectorstore object is destroyed.
**Issue:** #24740 and #24064
**Dependencies:** No new dependencies for this change
**Example notebook:** I created a notebook just to test the changes work
and gives the same results as the syncronous methods for vector and
hybrid search. With these changes, the asyncronous methods in the
retriever work as well.

**Lint and test**: Passes the tests and the linter
1754 lines
62 KiB
Python
1754 lines
62 KiB
Python
from __future__ import annotations
|
|
|
|
import asyncio
|
|
import base64
|
|
import itertools
|
|
import json
|
|
import logging
|
|
import uuid
|
|
from typing import (
|
|
TYPE_CHECKING,
|
|
Any,
|
|
Callable,
|
|
ClassVar,
|
|
Collection,
|
|
Dict,
|
|
Iterable,
|
|
List,
|
|
Literal,
|
|
Optional,
|
|
Tuple,
|
|
Type,
|
|
Union,
|
|
cast,
|
|
)
|
|
|
|
import numpy as np
|
|
from langchain_core.callbacks import (
|
|
AsyncCallbackManagerForRetrieverRun,
|
|
CallbackManagerForRetrieverRun,
|
|
)
|
|
from langchain_core.documents import Document
|
|
from langchain_core.embeddings import Embeddings
|
|
from langchain_core.exceptions import LangChainException
|
|
from langchain_core.pydantic_v1 import root_validator
|
|
from langchain_core.retrievers import BaseRetriever
|
|
from langchain_core.utils import get_from_env
|
|
from langchain_core.vectorstores import VectorStore
|
|
|
|
from langchain_community.vectorstores.utils import maximal_marginal_relevance
|
|
|
|
logger = logging.getLogger()
|
|
|
|
if TYPE_CHECKING:
|
|
from azure.search.documents import SearchClient, SearchItemPaged
|
|
from azure.search.documents.aio import (
|
|
AsyncSearchItemPaged,
|
|
)
|
|
from azure.search.documents.aio import (
|
|
SearchClient as AsyncSearchClient,
|
|
)
|
|
from azure.search.documents.indexes.models import (
|
|
CorsOptions,
|
|
ScoringProfile,
|
|
SearchField,
|
|
SemanticConfiguration,
|
|
VectorSearch,
|
|
)
|
|
|
|
# Allow overriding field names for Azure Search
|
|
FIELDS_ID = get_from_env(
|
|
key="AZURESEARCH_FIELDS_ID", env_key="AZURESEARCH_FIELDS_ID", default="id"
|
|
)
|
|
FIELDS_CONTENT = get_from_env(
|
|
key="AZURESEARCH_FIELDS_CONTENT",
|
|
env_key="AZURESEARCH_FIELDS_CONTENT",
|
|
default="content",
|
|
)
|
|
FIELDS_CONTENT_VECTOR = get_from_env(
|
|
key="AZURESEARCH_FIELDS_CONTENT_VECTOR",
|
|
env_key="AZURESEARCH_FIELDS_CONTENT_VECTOR",
|
|
default="content_vector",
|
|
)
|
|
FIELDS_METADATA = get_from_env(
|
|
key="AZURESEARCH_FIELDS_TAG", env_key="AZURESEARCH_FIELDS_TAG", default="metadata"
|
|
)
|
|
|
|
MAX_UPLOAD_BATCH_SIZE = 1000
|
|
|
|
|
|
def _get_search_client(
|
|
endpoint: str,
|
|
key: str,
|
|
index_name: str,
|
|
semantic_configuration_name: Optional[str] = None,
|
|
fields: Optional[List[SearchField]] = None,
|
|
vector_search: Optional[VectorSearch] = None,
|
|
semantic_configurations: Optional[
|
|
Union[SemanticConfiguration, List[SemanticConfiguration]]
|
|
] = None,
|
|
scoring_profiles: Optional[List[ScoringProfile]] = None,
|
|
default_scoring_profile: Optional[str] = None,
|
|
default_fields: Optional[List[SearchField]] = None,
|
|
user_agent: Optional[str] = "langchain",
|
|
cors_options: Optional[CorsOptions] = None,
|
|
async_: bool = False,
|
|
additional_search_client_options: Optional[Dict[str, Any]] = None,
|
|
) -> Union[SearchClient, AsyncSearchClient]:
|
|
from azure.core.credentials import AzureKeyCredential
|
|
from azure.core.exceptions import ResourceNotFoundError
|
|
from azure.identity import DefaultAzureCredential, InteractiveBrowserCredential
|
|
from azure.search.documents import SearchClient
|
|
from azure.search.documents.aio import SearchClient as AsyncSearchClient
|
|
from azure.search.documents.indexes import SearchIndexClient
|
|
from azure.search.documents.indexes.models import (
|
|
ExhaustiveKnnAlgorithmConfiguration,
|
|
ExhaustiveKnnParameters,
|
|
HnswAlgorithmConfiguration,
|
|
HnswParameters,
|
|
SearchIndex,
|
|
SemanticConfiguration,
|
|
SemanticField,
|
|
SemanticPrioritizedFields,
|
|
SemanticSearch,
|
|
VectorSearch,
|
|
VectorSearchAlgorithmKind,
|
|
VectorSearchAlgorithmMetric,
|
|
VectorSearchProfile,
|
|
)
|
|
|
|
additional_search_client_options = additional_search_client_options or {}
|
|
default_fields = default_fields or []
|
|
if key is None:
|
|
credential = DefaultAzureCredential()
|
|
elif key.upper() == "INTERACTIVE":
|
|
credential = InteractiveBrowserCredential()
|
|
credential.get_token("https://search.azure.com/.default")
|
|
else:
|
|
credential = AzureKeyCredential(key)
|
|
index_client: SearchIndexClient = SearchIndexClient(
|
|
endpoint=endpoint, credential=credential, user_agent=user_agent
|
|
)
|
|
try:
|
|
index_client.get_index(name=index_name)
|
|
except ResourceNotFoundError:
|
|
# Fields configuration
|
|
if fields is not None:
|
|
# Check mandatory fields
|
|
fields_types = {f.name: f.type for f in fields}
|
|
mandatory_fields = {df.name: df.type for df in default_fields}
|
|
# Check for missing keys
|
|
missing_fields = {
|
|
key: mandatory_fields[key]
|
|
for key, value in set(mandatory_fields.items())
|
|
- set(fields_types.items())
|
|
}
|
|
if len(missing_fields) > 0:
|
|
# Helper for formatting field information for each missing field.
|
|
def fmt_err(x: str) -> str:
|
|
return (
|
|
f"{x} current type: '{fields_types.get(x, 'MISSING')}'. "
|
|
f"It has to be '{mandatory_fields.get(x)}' or you can point "
|
|
f"to a different '{mandatory_fields.get(x)}' field name by "
|
|
f"using the env variable 'AZURESEARCH_FIELDS_{x.upper()}'"
|
|
)
|
|
|
|
error = "\n".join([fmt_err(x) for x in missing_fields])
|
|
raise ValueError(
|
|
f"You need to specify at least the following fields "
|
|
f"{missing_fields} or provide alternative field names in the env "
|
|
f"variables.\n\n{error}"
|
|
)
|
|
else:
|
|
fields = default_fields
|
|
# Vector search configuration
|
|
if vector_search is None:
|
|
vector_search = VectorSearch(
|
|
algorithms=[
|
|
HnswAlgorithmConfiguration(
|
|
name="default",
|
|
kind=VectorSearchAlgorithmKind.HNSW,
|
|
parameters=HnswParameters(
|
|
m=4,
|
|
ef_construction=400,
|
|
ef_search=500,
|
|
metric=VectorSearchAlgorithmMetric.COSINE,
|
|
),
|
|
),
|
|
ExhaustiveKnnAlgorithmConfiguration(
|
|
name="default_exhaustive_knn",
|
|
kind=VectorSearchAlgorithmKind.EXHAUSTIVE_KNN,
|
|
parameters=ExhaustiveKnnParameters(
|
|
metric=VectorSearchAlgorithmMetric.COSINE
|
|
),
|
|
),
|
|
],
|
|
profiles=[
|
|
VectorSearchProfile(
|
|
name="myHnswProfile",
|
|
algorithm_configuration_name="default",
|
|
),
|
|
VectorSearchProfile(
|
|
name="myExhaustiveKnnProfile",
|
|
algorithm_configuration_name="default_exhaustive_knn",
|
|
),
|
|
],
|
|
)
|
|
|
|
# Create the semantic settings with the configuration
|
|
if semantic_configurations:
|
|
if not isinstance(semantic_configurations, list):
|
|
semantic_configurations = [semantic_configurations]
|
|
semantic_search = SemanticSearch(
|
|
configurations=semantic_configurations,
|
|
default_configuration_name=semantic_configuration_name,
|
|
)
|
|
elif semantic_configuration_name:
|
|
# use default semantic configuration
|
|
semantic_configuration = SemanticConfiguration(
|
|
name=semantic_configuration_name,
|
|
prioritized_fields=SemanticPrioritizedFields(
|
|
content_fields=[SemanticField(field_name=FIELDS_CONTENT)],
|
|
),
|
|
)
|
|
semantic_search = SemanticSearch(configurations=[semantic_configuration])
|
|
else:
|
|
# don't use semantic search
|
|
semantic_search = None
|
|
|
|
# Create the search index with the semantic settings and vector search
|
|
index = SearchIndex(
|
|
name=index_name,
|
|
fields=fields,
|
|
vector_search=vector_search,
|
|
semantic_search=semantic_search,
|
|
scoring_profiles=scoring_profiles,
|
|
default_scoring_profile=default_scoring_profile,
|
|
cors_options=cors_options,
|
|
)
|
|
index_client.create_index(index)
|
|
# Create the search client
|
|
if not async_:
|
|
return SearchClient(
|
|
endpoint=endpoint,
|
|
index_name=index_name,
|
|
credential=credential,
|
|
user_agent=user_agent,
|
|
**additional_search_client_options,
|
|
)
|
|
else:
|
|
return AsyncSearchClient(
|
|
endpoint=endpoint,
|
|
index_name=index_name,
|
|
credential=credential,
|
|
user_agent=user_agent,
|
|
**additional_search_client_options,
|
|
)
|
|
|
|
|
|
class AzureSearch(VectorStore):
|
|
"""`Azure Cognitive Search` vector store."""
|
|
|
|
def __init__(
|
|
self,
|
|
azure_search_endpoint: str,
|
|
azure_search_key: str,
|
|
index_name: str,
|
|
embedding_function: Union[Callable, Embeddings],
|
|
search_type: str = "hybrid",
|
|
semantic_configuration_name: Optional[str] = None,
|
|
fields: Optional[List[SearchField]] = None,
|
|
vector_search: Optional[VectorSearch] = None,
|
|
semantic_configurations: Optional[
|
|
Union[SemanticConfiguration, List[SemanticConfiguration]]
|
|
] = None,
|
|
scoring_profiles: Optional[List[ScoringProfile]] = None,
|
|
default_scoring_profile: Optional[str] = None,
|
|
cors_options: Optional[CorsOptions] = None,
|
|
*,
|
|
vector_search_dimensions: Optional[int] = None,
|
|
additional_search_client_options: Optional[Dict[str, Any]] = None,
|
|
**kwargs: Any,
|
|
):
|
|
try:
|
|
from azure.search.documents.indexes.models import (
|
|
SearchableField,
|
|
SearchField,
|
|
SearchFieldDataType,
|
|
SimpleField,
|
|
)
|
|
except ImportError as e:
|
|
raise ImportError(
|
|
"Unable to import azure.search.documents. Please install with "
|
|
"`pip install -U azure-search-documents`."
|
|
) from e
|
|
|
|
"""Initialize with necessary components."""
|
|
# Initialize base class
|
|
self.embedding_function = embedding_function
|
|
|
|
if isinstance(self.embedding_function, Embeddings):
|
|
self.embed_query = self.embedding_function.embed_query
|
|
else:
|
|
self.embed_query = self.embedding_function
|
|
|
|
default_fields = [
|
|
SimpleField(
|
|
name=FIELDS_ID,
|
|
type=SearchFieldDataType.String,
|
|
key=True,
|
|
filterable=True,
|
|
),
|
|
SearchableField(
|
|
name=FIELDS_CONTENT,
|
|
type=SearchFieldDataType.String,
|
|
),
|
|
SearchField(
|
|
name=FIELDS_CONTENT_VECTOR,
|
|
type=SearchFieldDataType.Collection(SearchFieldDataType.Single),
|
|
searchable=True,
|
|
vector_search_dimensions=vector_search_dimensions
|
|
or len(self.embed_query("Text")),
|
|
vector_search_profile_name="myHnswProfile",
|
|
),
|
|
SearchableField(
|
|
name=FIELDS_METADATA,
|
|
type=SearchFieldDataType.String,
|
|
),
|
|
]
|
|
user_agent = "langchain"
|
|
if "user_agent" in kwargs and kwargs["user_agent"]:
|
|
user_agent += " " + kwargs["user_agent"]
|
|
self.client = _get_search_client(
|
|
azure_search_endpoint,
|
|
azure_search_key,
|
|
index_name,
|
|
semantic_configuration_name=semantic_configuration_name,
|
|
fields=fields,
|
|
vector_search=vector_search,
|
|
semantic_configurations=semantic_configurations,
|
|
scoring_profiles=scoring_profiles,
|
|
default_scoring_profile=default_scoring_profile,
|
|
default_fields=default_fields,
|
|
user_agent=user_agent,
|
|
cors_options=cors_options,
|
|
additional_search_client_options=additional_search_client_options,
|
|
)
|
|
self.async_client = _get_search_client(
|
|
azure_search_endpoint,
|
|
azure_search_key,
|
|
index_name,
|
|
semantic_configuration_name=semantic_configuration_name,
|
|
fields=fields,
|
|
vector_search=vector_search,
|
|
semantic_configurations=semantic_configurations,
|
|
scoring_profiles=scoring_profiles,
|
|
default_scoring_profile=default_scoring_profile,
|
|
default_fields=default_fields,
|
|
user_agent=user_agent,
|
|
cors_options=cors_options,
|
|
async_=True,
|
|
)
|
|
self.search_type = search_type
|
|
self.semantic_configuration_name = semantic_configuration_name
|
|
self.fields = fields if fields else default_fields
|
|
|
|
self._azure_search_endpoint = azure_search_endpoint
|
|
self._azure_search_key = azure_search_key
|
|
self._index_name = index_name
|
|
self._semantic_configuration_name = semantic_configuration_name
|
|
self._fields = fields
|
|
self._vector_search = vector_search
|
|
self._semantic_configurations = semantic_configurations
|
|
self._scoring_profiles = scoring_profiles
|
|
self._default_scoring_profile = default_scoring_profile
|
|
self._default_fields = default_fields
|
|
self._user_agent = user_agent
|
|
self._cors_options = cors_options
|
|
|
|
def __del__(self) -> None:
|
|
# Close the sync client
|
|
if hasattr(self, "client") and self.client:
|
|
self.client.close()
|
|
|
|
# Close the async client
|
|
if hasattr(self, "async_client") and self.async_client:
|
|
# Check if we're in an existing event loop
|
|
try:
|
|
loop = asyncio.get_event_loop()
|
|
if loop.is_running():
|
|
# Schedule the coroutine to close the async client
|
|
loop.create_task(self.async_client.close())
|
|
else:
|
|
# If no event loop is running, run the coroutine directly
|
|
loop.run_until_complete(self.async_client.close())
|
|
except RuntimeError:
|
|
# Handle the case where there's no event loop
|
|
loop = asyncio.new_event_loop()
|
|
asyncio.set_event_loop(loop)
|
|
try:
|
|
loop.run_until_complete(self.async_client.close())
|
|
finally:
|
|
loop.close()
|
|
|
|
@property
|
|
def embeddings(self) -> Optional[Embeddings]:
|
|
# TODO: Support embedding object directly
|
|
return (
|
|
self.embedding_function
|
|
if isinstance(self.embedding_function, Embeddings)
|
|
else None
|
|
)
|
|
|
|
async def _aembed_query(self, text: str) -> List[float]:
|
|
if self.embeddings:
|
|
return await self.embeddings.aembed_query(text)
|
|
else:
|
|
return cast(Callable, self.embedding_function)(text)
|
|
|
|
def add_texts(
|
|
self,
|
|
texts: Iterable[str],
|
|
metadatas: Optional[List[dict]] = None,
|
|
*,
|
|
keys: Optional[List[str]] = None,
|
|
**kwargs: Any,
|
|
) -> List[str]:
|
|
"""Add texts data to an existing index."""
|
|
# batching support if embedding function is an Embeddings object
|
|
if isinstance(self.embedding_function, Embeddings):
|
|
try:
|
|
embeddings = self.embedding_function.embed_documents(list(texts))
|
|
except NotImplementedError:
|
|
embeddings = [self.embedding_function.embed_query(x) for x in texts]
|
|
else:
|
|
embeddings = [self.embedding_function(x) for x in texts]
|
|
|
|
if len(embeddings) == 0:
|
|
logger.debug("Nothing to insert, skipping.")
|
|
return []
|
|
|
|
return self.add_embeddings(zip(texts, embeddings), metadatas, keys=keys)
|
|
|
|
async def aadd_texts(
|
|
self,
|
|
texts: Iterable[str],
|
|
metadatas: Optional[List[dict]] = None,
|
|
*,
|
|
keys: Optional[List[str]] = None,
|
|
**kwargs: Any,
|
|
) -> List[str]:
|
|
if isinstance(self.embedding_function, Embeddings):
|
|
try:
|
|
embeddings = await self.embedding_function.aembed_documents(list(texts))
|
|
except NotImplementedError:
|
|
embeddings = [
|
|
await self.embedding_function.aembed_query(x) for x in texts
|
|
]
|
|
else:
|
|
embeddings = [self.embedding_function(x) for x in texts]
|
|
|
|
if len(embeddings) == 0:
|
|
logger.debug("Nothing to insert, skipping.")
|
|
return []
|
|
|
|
return await self.aadd_embeddings(zip(texts, embeddings), metadatas, keys=keys)
|
|
|
|
def add_embeddings(
|
|
self,
|
|
text_embeddings: Iterable[Tuple[str, List[float]]],
|
|
metadatas: Optional[List[dict]] = None,
|
|
*,
|
|
keys: Optional[List[str]] = None,
|
|
) -> List[str]:
|
|
"""Add embeddings to an existing index."""
|
|
ids = []
|
|
|
|
# Write data to index
|
|
data = []
|
|
for i, (text, embedding) in enumerate(text_embeddings):
|
|
# Use provided key otherwise use default key
|
|
key = keys[i] if keys else str(uuid.uuid4())
|
|
# Encoding key for Azure Search valid characters
|
|
key = base64.urlsafe_b64encode(bytes(key, "utf-8")).decode("ascii")
|
|
metadata = metadatas[i] if metadatas else {}
|
|
# Add data to index
|
|
# Additional metadata to fields mapping
|
|
doc = {
|
|
"@search.action": "upload",
|
|
FIELDS_ID: key,
|
|
FIELDS_CONTENT: text,
|
|
FIELDS_CONTENT_VECTOR: np.array(embedding, dtype=np.float32).tolist(),
|
|
FIELDS_METADATA: json.dumps(metadata),
|
|
}
|
|
if metadata:
|
|
additional_fields = {
|
|
k: v
|
|
for k, v in metadata.items()
|
|
if k in [x.name for x in self.fields]
|
|
}
|
|
doc.update(additional_fields)
|
|
data.append(doc)
|
|
ids.append(key)
|
|
# Upload data in batches
|
|
if len(data) == MAX_UPLOAD_BATCH_SIZE:
|
|
response = self.client.upload_documents(documents=data)
|
|
# Check if all documents were successfully uploaded
|
|
if not all(r.succeeded for r in response):
|
|
raise LangChainException(response)
|
|
# Reset data
|
|
data = []
|
|
|
|
# Considering case where data is an exact multiple of batch-size entries
|
|
if len(data) == 0:
|
|
return ids
|
|
|
|
# Upload data to index
|
|
response = self.client.upload_documents(documents=data)
|
|
# Check if all documents were successfully uploaded
|
|
if all(r.succeeded for r in response):
|
|
return ids
|
|
else:
|
|
raise LangChainException(response)
|
|
|
|
async def aadd_embeddings(
|
|
self,
|
|
text_embeddings: Iterable[Tuple[str, List[float]]],
|
|
metadatas: Optional[List[dict]] = None,
|
|
*,
|
|
keys: Optional[List[str]] = None,
|
|
) -> List[str]:
|
|
"""Add embeddings to an existing index."""
|
|
ids = []
|
|
|
|
# Write data to index
|
|
data = []
|
|
for i, (text, embedding) in enumerate(text_embeddings):
|
|
# Use provided key otherwise use default key
|
|
key = keys[i] if keys else str(uuid.uuid4())
|
|
# Encoding key for Azure Search valid characters
|
|
key = base64.urlsafe_b64encode(bytes(key, "utf-8")).decode("ascii")
|
|
metadata = metadatas[i] if metadatas else {}
|
|
# Add data to index
|
|
# Additional metadata to fields mapping
|
|
doc = {
|
|
"@search.action": "upload",
|
|
FIELDS_ID: key,
|
|
FIELDS_CONTENT: text,
|
|
FIELDS_CONTENT_VECTOR: np.array(embedding, dtype=np.float32).tolist(),
|
|
FIELDS_METADATA: json.dumps(metadata),
|
|
}
|
|
if metadata:
|
|
additional_fields = {
|
|
k: v
|
|
for k, v in metadata.items()
|
|
if k in [x.name for x in self.fields]
|
|
}
|
|
doc.update(additional_fields)
|
|
data.append(doc)
|
|
ids.append(key)
|
|
# Upload data in batches
|
|
if len(data) == MAX_UPLOAD_BATCH_SIZE:
|
|
response = await self.async_client.upload_documents(documents=data)
|
|
# Check if all documents were successfully uploaded
|
|
if not all(r.succeeded for r in response):
|
|
raise LangChainException(response)
|
|
# Reset data
|
|
data = []
|
|
|
|
# Considering case where data is an exact multiple of batch-size entries
|
|
if len(data) == 0:
|
|
return ids
|
|
|
|
# Upload data to index
|
|
response = await self.async_client.upload_documents(documents=data)
|
|
# Check if all documents were successfully uploaded
|
|
if all(r.succeeded for r in response):
|
|
return ids
|
|
else:
|
|
raise LangChainException(response)
|
|
|
|
def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> bool:
|
|
"""Delete by vector ID.
|
|
|
|
Args:
|
|
ids: List of ids to delete.
|
|
|
|
Returns:
|
|
bool: True if deletion is successful,
|
|
False otherwise.
|
|
"""
|
|
if ids:
|
|
res = self.client.delete_documents([{FIELDS_ID: i} for i in ids])
|
|
return len(res) > 0
|
|
else:
|
|
return False
|
|
|
|
async def adelete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> bool:
|
|
"""Delete by vector ID.
|
|
|
|
Args:
|
|
ids: List of ids to delete.
|
|
|
|
Returns:
|
|
bool: True if deletion is successful,
|
|
False otherwise.
|
|
"""
|
|
if ids:
|
|
res = await self.async_client.delete_documents([{"id": i} for i in ids])
|
|
return len(res) > 0
|
|
else:
|
|
return False
|
|
|
|
def similarity_search(
|
|
self,
|
|
query: str,
|
|
k: int = 4,
|
|
*,
|
|
search_type: Optional[str] = None,
|
|
**kwargs: Any,
|
|
) -> List[Document]:
|
|
search_type = search_type or self.search_type
|
|
if search_type == "similarity":
|
|
docs = self.vector_search(query, k=k, **kwargs)
|
|
elif search_type == "hybrid":
|
|
docs = self.hybrid_search(query, k=k, **kwargs)
|
|
elif search_type == "semantic_hybrid":
|
|
docs = self.semantic_hybrid_search(query, k=k, **kwargs)
|
|
else:
|
|
raise ValueError(f"search_type of {search_type} not allowed.")
|
|
return docs
|
|
|
|
def similarity_search_with_score(
|
|
self, query: str, *, k: int = 4, **kwargs: Any
|
|
) -> List[Tuple[Document, float]]:
|
|
"""Run similarity search with distance."""
|
|
search_type = kwargs.get("search_type", self.search_type)
|
|
if search_type == "similarity":
|
|
return self.vector_search_with_score(query, k=k, **kwargs)
|
|
elif search_type == "hybrid":
|
|
return self.hybrid_search_with_score(query, k=k, **kwargs)
|
|
elif search_type == "semantic_hybrid":
|
|
return self.semantic_hybrid_search_with_score(query, k=k, **kwargs)
|
|
else:
|
|
raise ValueError(f"search_type of {search_type} not allowed.")
|
|
|
|
async def asimilarity_search(
|
|
self,
|
|
query: str,
|
|
k: int = 4,
|
|
*,
|
|
search_type: Optional[str] = None,
|
|
**kwargs: Any,
|
|
) -> List[Document]:
|
|
search_type = search_type or self.search_type
|
|
if search_type == "similarity":
|
|
docs = await self.avector_search(query, k=k, **kwargs)
|
|
elif search_type == "hybrid":
|
|
docs = await self.ahybrid_search(query, k=k, **kwargs)
|
|
elif search_type == "semantic_hybrid":
|
|
docs = await self.asemantic_hybrid_search(query, k=k, **kwargs)
|
|
else:
|
|
raise ValueError(f"search_type of {search_type} not allowed.")
|
|
return docs
|
|
|
|
async def asimilarity_search_with_score(
|
|
self, query: str, *, k: int = 4, **kwargs: Any
|
|
) -> List[Tuple[Document, float]]:
|
|
"""Run similarity search with distance."""
|
|
search_type = kwargs.get("search_type", self.search_type)
|
|
if search_type == "similarity":
|
|
return await self.avector_search_with_score(query, k=k, **kwargs)
|
|
elif search_type == "hybrid":
|
|
return await self.ahybrid_search_with_score(query, k=k, **kwargs)
|
|
elif search_type == "semantic_hybrid":
|
|
return await self.asemantic_hybrid_search_with_score(query, k=k, **kwargs)
|
|
else:
|
|
raise ValueError(f"search_type of {search_type} not allowed.")
|
|
|
|
def similarity_search_with_relevance_scores(
|
|
self,
|
|
query: str,
|
|
k: int = 4,
|
|
*,
|
|
score_threshold: Optional[float] = None,
|
|
**kwargs: Any,
|
|
) -> List[Tuple[Document, float]]:
|
|
result = self.vector_search_with_score(query, k=k, **kwargs)
|
|
return (
|
|
result
|
|
if score_threshold is None
|
|
else [r for r in result if r[1] >= score_threshold]
|
|
)
|
|
|
|
async def asimilarity_search_with_relevance_scores(
|
|
self,
|
|
query: str,
|
|
k: int = 4,
|
|
*,
|
|
score_threshold: Optional[float] = None,
|
|
**kwargs: Any,
|
|
) -> List[Tuple[Document, float]]:
|
|
result = await self.avector_search_with_score(query, k=k, **kwargs)
|
|
return (
|
|
result
|
|
if score_threshold is None
|
|
else [r for r in result if r[1] >= score_threshold]
|
|
)
|
|
|
|
def vector_search(
|
|
self, query: str, k: int = 4, *, filters: Optional[str] = None, **kwargs: Any
|
|
) -> List[Document]:
|
|
"""
|
|
Returns the most similar indexed documents to the query text.
|
|
|
|
Args:
|
|
query (str): The query text for which to find similar documents.
|
|
k (int): The number of documents to return. Default is 4.
|
|
|
|
Returns:
|
|
List[Document]: A list of documents that are most similar to the query text.
|
|
"""
|
|
docs_and_scores = self.vector_search_with_score(query, k=k, filters=filters)
|
|
return [doc for doc, _ in docs_and_scores]
|
|
|
|
async def avector_search(
|
|
self, query: str, k: int = 4, *, filters: Optional[str] = None, **kwargs: Any
|
|
) -> List[Document]:
|
|
"""
|
|
Returns the most similar indexed documents to the query text.
|
|
|
|
Args:
|
|
query (str): The query text for which to find similar documents.
|
|
k (int): The number of documents to return. Default is 4.
|
|
|
|
Returns:
|
|
List[Document]: A list of documents that are most similar to the query text.
|
|
"""
|
|
docs_and_scores = await self.avector_search_with_score(
|
|
query, k=k, filters=filters
|
|
)
|
|
return [doc for doc, _ in docs_and_scores]
|
|
|
|
def vector_search_with_score(
|
|
self,
|
|
query: str,
|
|
k: int = 4,
|
|
filters: Optional[str] = None,
|
|
**kwargs: Any,
|
|
) -> List[Tuple[Document, float]]:
|
|
"""Return docs most similar to query.
|
|
|
|
Args:
|
|
query (str): Text to look up documents similar to.
|
|
k (int, optional): Number of Documents to return. Defaults to 4.
|
|
filters (str, optional): Filtering expression. Defaults to None.
|
|
|
|
Returns:
|
|
List[Tuple[Document, float]]: List of Documents most similar
|
|
to the query and score for each
|
|
"""
|
|
embedding = self.embed_query(query)
|
|
results = self._simple_search(embedding, "", k, filters=filters, **kwargs)
|
|
|
|
return _results_to_documents(results)
|
|
|
|
async def avector_search_with_score(
|
|
self,
|
|
query: str,
|
|
k: int = 4,
|
|
filters: Optional[str] = None,
|
|
**kwargs: Any,
|
|
) -> List[Tuple[Document, float]]:
|
|
"""Return docs most similar to query.
|
|
|
|
Args:
|
|
query (str): Text to look up documents similar to.
|
|
k (int, optional): Number of Documents to return. Defaults to 4.
|
|
filters (str, optional): Filtering expression. Defaults to None.
|
|
|
|
Returns:
|
|
List[Tuple[Document, float]]: List of Documents most similar
|
|
to the query and score for each
|
|
"""
|
|
embedding = await self._aembed_query(query)
|
|
results = await self._asimple_search(
|
|
embedding, "", k, filters=filters, **kwargs
|
|
)
|
|
|
|
return await _aresults_to_documents(results)
|
|
|
|
def max_marginal_relevance_search_with_score(
|
|
self,
|
|
query: str,
|
|
k: int = 4,
|
|
fetch_k: int = 20,
|
|
lambda_mult: float = 0.5,
|
|
*,
|
|
filters: Optional[str] = None,
|
|
**kwargs: Any,
|
|
) -> List[Tuple[Document, float]]:
|
|
"""Perform a search and return results that are reordered by MMR.
|
|
|
|
Args:
|
|
query (str): Text to look up documents similar to.
|
|
k (int, optional): How many results to give. Defaults to 4.
|
|
fetch_k (int, optional): Total results to select k from.
|
|
Defaults to 20.
|
|
lambda_mult: Number between 0 and 1 that determines the degree
|
|
of diversity among the results with 0 corresponding
|
|
to maximum diversity and 1 to minimum diversity.
|
|
Defaults to 0.5
|
|
filters (str, optional): Filtering expression. Defaults to None.
|
|
|
|
Returns:
|
|
List[Tuple[Document, float]]: List of Documents most similar
|
|
to the query and score for each
|
|
"""
|
|
embedding = self.embed_query(query)
|
|
results = self._simple_search(embedding, "", fetch_k, filters=filters, **kwargs)
|
|
|
|
return _reorder_results_with_maximal_marginal_relevance(
|
|
results, query_embedding=np.array(embedding), lambda_mult=lambda_mult, k=k
|
|
)
|
|
|
|
async def amax_marginal_relevance_search_with_score(
|
|
self,
|
|
query: str,
|
|
k: int = 4,
|
|
fetch_k: int = 20,
|
|
lambda_mult: float = 0.5,
|
|
*,
|
|
filters: Optional[str] = None,
|
|
**kwargs: Any,
|
|
) -> List[Tuple[Document, float]]:
|
|
"""Perform a search and return results that are reordered by MMR.
|
|
|
|
Args:
|
|
query (str): Text to look up documents similar to.
|
|
k (int, optional): How many results to give. Defaults to 4.
|
|
fetch_k (int, optional): Total results to select k from.
|
|
Defaults to 20.
|
|
lambda_mult: Number between 0 and 1 that determines the degree
|
|
of diversity among the results with 0 corresponding
|
|
to maximum diversity and 1 to minimum diversity.
|
|
Defaults to 0.5
|
|
filters (str, optional): Filtering expression. Defaults to None.
|
|
|
|
Returns:
|
|
List[Tuple[Document, float]]: List of Documents most similar
|
|
to the query and score for each
|
|
"""
|
|
embedding = await self._aembed_query(query)
|
|
results = await self._asimple_search(
|
|
embedding, "", fetch_k, filters=filters, **kwargs
|
|
)
|
|
|
|
return await _areorder_results_with_maximal_marginal_relevance(
|
|
results,
|
|
query_embedding=np.array(embedding),
|
|
lambda_mult=lambda_mult,
|
|
k=k,
|
|
)
|
|
|
|
def hybrid_search(self, query: str, k: int = 4, **kwargs: Any) -> List[Document]:
|
|
"""
|
|
Returns the most similar indexed documents to the query text.
|
|
|
|
Args:
|
|
query (str): The query text for which to find similar documents.
|
|
k (int): The number of documents to return. Default is 4.
|
|
|
|
Returns:
|
|
List[Document]: A list of documents that are most similar to the query text.
|
|
"""
|
|
docs_and_scores = self.hybrid_search_with_score(query, k=k, **kwargs)
|
|
return [doc for doc, _ in docs_and_scores]
|
|
|
|
async def ahybrid_search(
|
|
self, query: str, k: int = 4, **kwargs: Any
|
|
) -> List[Document]:
|
|
"""
|
|
Returns the most similar indexed documents to the query text.
|
|
|
|
Args:
|
|
query (str): The query text for which to find similar documents.
|
|
k (int): The number of documents to return. Default is 4.
|
|
|
|
Returns:
|
|
List[Document]: A list of documents that are most similar to the query text.
|
|
"""
|
|
docs_and_scores = await self.ahybrid_search_with_score(query, k=k, **kwargs)
|
|
return [doc for doc, _ in docs_and_scores]
|
|
|
|
def hybrid_search_with_score(
|
|
self,
|
|
query: str,
|
|
k: int = 4,
|
|
filters: Optional[str] = None,
|
|
**kwargs: Any,
|
|
) -> List[Tuple[Document, float]]:
|
|
"""Return docs most similar to query with a hybrid query.
|
|
|
|
Args:
|
|
query: Text to look up documents similar to.
|
|
k: Number of Documents to return. Defaults to 4.
|
|
|
|
Returns:
|
|
List of Documents most similar to the query and score for each
|
|
"""
|
|
|
|
embedding = self.embed_query(query)
|
|
results = self._simple_search(embedding, query, k, filters=filters, **kwargs)
|
|
|
|
return _results_to_documents(results)
|
|
|
|
async def ahybrid_search_with_score(
|
|
self,
|
|
query: str,
|
|
k: int = 4,
|
|
filters: Optional[str] = None,
|
|
**kwargs: Any,
|
|
) -> List[Tuple[Document, float]]:
|
|
"""Return docs most similar to query with a hybrid query.
|
|
|
|
Args:
|
|
query: Text to look up documents similar to.
|
|
k: Number of Documents to return. Defaults to 4.
|
|
|
|
Returns:
|
|
List of Documents most similar to the query and score for each
|
|
"""
|
|
|
|
embedding = await self._aembed_query(query)
|
|
results = await self._asimple_search(
|
|
embedding, query, k, filters=filters, **kwargs
|
|
)
|
|
|
|
return await _aresults_to_documents(results)
|
|
|
|
def hybrid_search_with_relevance_scores(
|
|
self,
|
|
query: str,
|
|
k: int = 4,
|
|
*,
|
|
score_threshold: Optional[float] = None,
|
|
**kwargs: Any,
|
|
) -> List[Tuple[Document, float]]:
|
|
result = self.hybrid_search_with_score(query, k=k, **kwargs)
|
|
return (
|
|
result
|
|
if score_threshold is None
|
|
else [r for r in result if r[1] >= score_threshold]
|
|
)
|
|
|
|
async def ahybrid_search_with_relevance_scores(
|
|
self,
|
|
query: str,
|
|
k: int = 4,
|
|
*,
|
|
score_threshold: Optional[float] = None,
|
|
**kwargs: Any,
|
|
) -> List[Tuple[Document, float]]:
|
|
result = await self.ahybrid_search_with_score(query, k=k, **kwargs)
|
|
return (
|
|
result
|
|
if score_threshold is None
|
|
else [r for r in result if r[1] >= score_threshold]
|
|
)
|
|
|
|
def hybrid_max_marginal_relevance_search_with_score(
|
|
self,
|
|
query: str,
|
|
k: int = 4,
|
|
fetch_k: int = 20,
|
|
lambda_mult: float = 0.5,
|
|
*,
|
|
filters: Optional[str] = None,
|
|
**kwargs: Any,
|
|
) -> List[Tuple[Document, float]]:
|
|
"""Return docs most similar to query with a hybrid query
|
|
and reorder results by MMR.
|
|
|
|
Args:
|
|
query (str): Text to look up documents similar to.
|
|
k (int, optional): Number of Documents to return. Defaults to 4.
|
|
fetch_k (int, optional): Total results to select k from.
|
|
Defaults to 20.
|
|
lambda_mult: Number between 0 and 1 that determines the degree
|
|
of diversity among the results with 0 corresponding
|
|
to maximum diversity and 1 to minimum diversity.
|
|
Defaults to 0.5
|
|
filters (str, optional): Filtering expression. Defaults to None.
|
|
|
|
Returns:
|
|
List of Documents most similar to the query and score for each
|
|
"""
|
|
|
|
embedding = self.embed_query(query)
|
|
results = self._simple_search(
|
|
embedding, query, fetch_k, filters=filters, **kwargs
|
|
)
|
|
|
|
return _reorder_results_with_maximal_marginal_relevance(
|
|
results, query_embedding=np.array(embedding), lambda_mult=lambda_mult, k=k
|
|
)
|
|
|
|
async def ahybrid_max_marginal_relevance_search_with_score(
|
|
self,
|
|
query: str,
|
|
k: int = 4,
|
|
fetch_k: int = 20,
|
|
lambda_mult: float = 0.5,
|
|
*,
|
|
filters: Optional[str] = None,
|
|
**kwargs: Any,
|
|
) -> List[Tuple[Document, float]]:
|
|
"""Return docs most similar to query with a hybrid query
|
|
and reorder results by MMR.
|
|
|
|
Args:
|
|
query (str): Text to look up documents similar to.
|
|
k (int, optional): Number of Documents to return. Defaults to 4.
|
|
fetch_k (int, optional): Total results to select k from.
|
|
Defaults to 20.
|
|
lambda_mult: Number between 0 and 1 that determines the degree
|
|
of diversity among the results with 0 corresponding
|
|
to maximum diversity and 1 to minimum diversity.
|
|
Defaults to 0.5
|
|
filters (str, optional): Filtering expression. Defaults to None.
|
|
|
|
Returns:
|
|
List of Documents most similar to the query and score for each
|
|
"""
|
|
|
|
embedding = await self._aembed_query(query)
|
|
results = await self._asimple_search(
|
|
embedding, query, fetch_k, filters=filters, **kwargs
|
|
)
|
|
|
|
return await _areorder_results_with_maximal_marginal_relevance(
|
|
results,
|
|
query_embedding=np.array(embedding),
|
|
lambda_mult=lambda_mult,
|
|
k=k,
|
|
)
|
|
|
|
def _simple_search(
|
|
self,
|
|
embedding: List[float],
|
|
text_query: str,
|
|
k: int,
|
|
*,
|
|
filters: Optional[str] = None,
|
|
**kwargs: Any,
|
|
) -> SearchItemPaged[dict]:
|
|
"""Perform vector or hybrid search in the Azure search index.
|
|
|
|
Args:
|
|
embedding: A vector embedding to search in the vector space.
|
|
text_query: A full-text search query expression;
|
|
Use "*" or omit this parameter to perform only vector search.
|
|
k: Number of documents to return.
|
|
filters: Filtering expression.
|
|
Returns:
|
|
Search items
|
|
"""
|
|
from azure.search.documents.models import VectorizedQuery
|
|
|
|
return self.client.search(
|
|
search_text=text_query,
|
|
vector_queries=[
|
|
VectorizedQuery(
|
|
vector=np.array(embedding, dtype=np.float32).tolist(),
|
|
k_nearest_neighbors=k,
|
|
fields=FIELDS_CONTENT_VECTOR,
|
|
)
|
|
],
|
|
filter=filters,
|
|
top=k,
|
|
**kwargs,
|
|
)
|
|
|
|
async def _asimple_search(
|
|
self,
|
|
embedding: List[float],
|
|
text_query: str,
|
|
k: int,
|
|
*,
|
|
filters: Optional[str] = None,
|
|
**kwargs: Any,
|
|
) -> AsyncSearchItemPaged[dict]:
|
|
"""Perform vector or hybrid search in the Azure search index.
|
|
|
|
Args:
|
|
embedding: A vector embedding to search in the vector space.
|
|
text_query: A full-text search query expression;
|
|
Use "*" or omit this parameter to perform only vector search.
|
|
k: Number of documents to return.
|
|
filters: Filtering expression.
|
|
Returns:
|
|
Search items
|
|
"""
|
|
from azure.search.documents.models import VectorizedQuery
|
|
|
|
return await self.async_client.search(
|
|
search_text=text_query,
|
|
vector_queries=[
|
|
VectorizedQuery(
|
|
vector=np.array(embedding, dtype=np.float32).tolist(),
|
|
k_nearest_neighbors=k,
|
|
fields=FIELDS_CONTENT_VECTOR,
|
|
)
|
|
],
|
|
filter=filters,
|
|
top=k,
|
|
**kwargs,
|
|
)
|
|
|
|
def semantic_hybrid_search(
|
|
self, query: str, k: int = 4, **kwargs: Any
|
|
) -> List[Document]:
|
|
"""
|
|
Returns the most similar indexed documents to the query text.
|
|
|
|
Args:
|
|
query (str): The query text for which to find similar documents.
|
|
k (int): The number of documents to return. Default is 4.
|
|
filters: Filtering expression.
|
|
|
|
Returns:
|
|
List[Document]: A list of documents that are most similar to the query text.
|
|
"""
|
|
docs_and_scores = self.semantic_hybrid_search_with_score_and_rerank(
|
|
query, k=k, **kwargs
|
|
)
|
|
return [doc for doc, _, _ in docs_and_scores]
|
|
|
|
async def asemantic_hybrid_search(
|
|
self, query: str, k: int = 4, **kwargs: Any
|
|
) -> List[Document]:
|
|
"""
|
|
Returns the most similar indexed documents to the query text.
|
|
|
|
Args:
|
|
query (str): The query text for which to find similar documents.
|
|
k (int): The number of documents to return. Default is 4.
|
|
filters: Filtering expression.
|
|
|
|
Returns:
|
|
List[Document]: A list of documents that are most similar to the query text.
|
|
"""
|
|
docs_and_scores = await self.asemantic_hybrid_search_with_score_and_rerank(
|
|
query, k=k, **kwargs
|
|
)
|
|
return [doc for doc, _, _ in docs_and_scores]
|
|
|
|
def semantic_hybrid_search_with_score(
|
|
self,
|
|
query: str,
|
|
k: int = 4,
|
|
score_type: Literal["score", "reranker_score"] = "score",
|
|
*,
|
|
score_threshold: Optional[float] = None,
|
|
**kwargs: Any,
|
|
) -> List[Tuple[Document, float]]:
|
|
"""
|
|
Returns the most similar indexed documents to the query text.
|
|
|
|
Args:
|
|
query (str): The query text for which to find similar documents.
|
|
k (int): The number of documents to return. Default is 4.
|
|
score_type: Must either be "score" or "reranker_score".
|
|
Defaulted to "score".
|
|
filters: Filtering expression.
|
|
|
|
Returns:
|
|
List[Tuple[Document, float]]: A list of documents and their
|
|
corresponding scores.
|
|
"""
|
|
docs_and_scores = self.semantic_hybrid_search_with_score_and_rerank(
|
|
query, k=k, **kwargs
|
|
)
|
|
if score_type == "score":
|
|
return [
|
|
(doc, score)
|
|
for doc, score, _ in docs_and_scores
|
|
if score_threshold is None or score >= score_threshold
|
|
]
|
|
elif score_type == "reranker_score":
|
|
return [
|
|
(doc, reranker_score)
|
|
for doc, _, reranker_score in docs_and_scores
|
|
if score_threshold is None or reranker_score >= score_threshold
|
|
]
|
|
|
|
async def asemantic_hybrid_search_with_score(
|
|
self,
|
|
query: str,
|
|
k: int = 4,
|
|
score_type: Literal["score", "reranker_score"] = "score",
|
|
*,
|
|
score_threshold: Optional[float] = None,
|
|
**kwargs: Any,
|
|
) -> List[Tuple[Document, float]]:
|
|
"""
|
|
Returns the most similar indexed documents to the query text.
|
|
|
|
Args:
|
|
query (str): The query text for which to find similar documents.
|
|
k (int): The number of documents to return. Default is 4.
|
|
score_type: Must either be "score" or "reranker_score".
|
|
Defaulted to "score".
|
|
filters: Filtering expression.
|
|
|
|
Returns:
|
|
List[Tuple[Document, float]]: A list of documents and their
|
|
corresponding scores.
|
|
"""
|
|
docs_and_scores = await self.asemantic_hybrid_search_with_score_and_rerank(
|
|
query, k=k, **kwargs
|
|
)
|
|
if score_type == "score":
|
|
return [
|
|
(doc, score)
|
|
for doc, score, _ in docs_and_scores
|
|
if score_threshold is None or score >= score_threshold
|
|
]
|
|
elif score_type == "reranker_score":
|
|
return [
|
|
(doc, reranker_score)
|
|
for doc, _, reranker_score in docs_and_scores
|
|
if score_threshold is None or reranker_score >= score_threshold
|
|
]
|
|
|
|
def semantic_hybrid_search_with_score_and_rerank(
|
|
self, query: str, k: int = 4, *, filters: Optional[str] = None, **kwargs: Any
|
|
) -> List[Tuple[Document, float, float]]:
|
|
"""Return docs most similar to query with a hybrid query.
|
|
|
|
Args:
|
|
query: Text to look up documents similar to.
|
|
k: Number of Documents to return. Defaults to 4.
|
|
filters: Filtering expression.
|
|
|
|
Returns:
|
|
List of Documents most similar to the query and score for each
|
|
"""
|
|
from azure.search.documents.models import VectorizedQuery
|
|
|
|
results = self.client.search(
|
|
search_text=query,
|
|
vector_queries=[
|
|
VectorizedQuery(
|
|
vector=np.array(self.embed_query(query), dtype=np.float32).tolist(),
|
|
k_nearest_neighbors=k,
|
|
fields=FIELDS_CONTENT_VECTOR,
|
|
)
|
|
],
|
|
filter=filters,
|
|
query_type="semantic",
|
|
semantic_configuration_name=self.semantic_configuration_name,
|
|
query_caption="extractive",
|
|
query_answer="extractive",
|
|
top=k,
|
|
**kwargs,
|
|
)
|
|
# Get Semantic Answers
|
|
semantic_answers = results.get_answers() or []
|
|
semantic_answers_dict: Dict = {}
|
|
for semantic_answer in semantic_answers:
|
|
semantic_answers_dict[semantic_answer.key] = {
|
|
"text": semantic_answer.text,
|
|
"highlights": semantic_answer.highlights,
|
|
}
|
|
# Convert results to Document objects
|
|
docs = [
|
|
(
|
|
Document(
|
|
page_content=result.pop(FIELDS_CONTENT),
|
|
metadata={
|
|
**(
|
|
json.loads(result[FIELDS_METADATA])
|
|
if FIELDS_METADATA in result
|
|
else {
|
|
k: v
|
|
for k, v in result.items()
|
|
if k != FIELDS_CONTENT_VECTOR
|
|
}
|
|
),
|
|
**{
|
|
"captions": {
|
|
"text": result.get("@search.captions", [{}])[0].text,
|
|
"highlights": result.get("@search.captions", [{}])[
|
|
0
|
|
].highlights,
|
|
}
|
|
if result.get("@search.captions")
|
|
else {},
|
|
"answers": semantic_answers_dict.get(
|
|
result.get(FIELDS_ID, ""),
|
|
"",
|
|
),
|
|
},
|
|
},
|
|
),
|
|
float(result["@search.score"]),
|
|
float(result["@search.reranker_score"]),
|
|
)
|
|
for result in results
|
|
]
|
|
return docs
|
|
|
|
async def asemantic_hybrid_search_with_score_and_rerank(
|
|
self, query: str, k: int = 4, *, filters: Optional[str] = None, **kwargs: Any
|
|
) -> List[Tuple[Document, float, float]]:
|
|
"""Return docs most similar to query with a hybrid query.
|
|
|
|
Args:
|
|
query: Text to look up documents similar to.
|
|
k: Number of Documents to return. Defaults to 4.
|
|
filters: Filtering expression.
|
|
|
|
Returns:
|
|
List of Documents most similar to the query and score for each
|
|
"""
|
|
from azure.search.documents.models import VectorizedQuery
|
|
|
|
vector = await self._aembed_query(query)
|
|
results = await self.async_client.search(
|
|
search_text=query,
|
|
vector_queries=[
|
|
VectorizedQuery(
|
|
vector=np.array(vector, dtype=np.float32).tolist(),
|
|
k_nearest_neighbors=k,
|
|
fields=FIELDS_CONTENT_VECTOR,
|
|
)
|
|
],
|
|
filter=filters,
|
|
query_type="semantic",
|
|
semantic_configuration_name=self.semantic_configuration_name,
|
|
query_caption="extractive",
|
|
query_answer="extractive",
|
|
top=k,
|
|
**kwargs,
|
|
)
|
|
# Get Semantic Answers
|
|
semantic_answers = (await results.get_answers()) or []
|
|
semantic_answers_dict: Dict = {}
|
|
for semantic_answer in semantic_answers:
|
|
semantic_answers_dict[semantic_answer.key] = {
|
|
"text": semantic_answer.text,
|
|
"highlights": semantic_answer.highlights,
|
|
}
|
|
# Convert results to Document objects
|
|
docs = [
|
|
(
|
|
Document(
|
|
page_content=result.pop(FIELDS_CONTENT),
|
|
metadata={
|
|
**(
|
|
json.loads(result[FIELDS_METADATA])
|
|
if FIELDS_METADATA in result
|
|
else {
|
|
k: v
|
|
for k, v in result.items()
|
|
if k != FIELDS_CONTENT_VECTOR
|
|
}
|
|
),
|
|
**{
|
|
"captions": {
|
|
"text": result.get("@search.captions", [{}])[0].text,
|
|
"highlights": result.get("@search.captions", [{}])[
|
|
0
|
|
].highlights,
|
|
}
|
|
if result.get("@search.captions")
|
|
else {},
|
|
"answers": semantic_answers_dict.get(
|
|
result.get(FIELDS_ID, ""),
|
|
"",
|
|
),
|
|
},
|
|
},
|
|
),
|
|
float(result["@search.score"]),
|
|
float(result["@search.reranker_score"]),
|
|
)
|
|
async for result in results
|
|
]
|
|
return docs
|
|
|
|
@classmethod
|
|
def from_texts(
|
|
cls: Type[AzureSearch],
|
|
texts: List[str],
|
|
embedding: Embeddings,
|
|
metadatas: Optional[List[dict]] = None,
|
|
azure_search_endpoint: str = "",
|
|
azure_search_key: str = "",
|
|
index_name: str = "langchain-index",
|
|
fields: Optional[List[SearchField]] = None,
|
|
**kwargs: Any,
|
|
) -> AzureSearch:
|
|
# Creating a new Azure Search instance
|
|
azure_search = cls(
|
|
azure_search_endpoint,
|
|
azure_search_key,
|
|
index_name,
|
|
embedding,
|
|
fields=fields,
|
|
**kwargs,
|
|
)
|
|
azure_search.add_texts(texts, metadatas, **kwargs)
|
|
return azure_search
|
|
|
|
@classmethod
|
|
async def afrom_texts(
|
|
cls: Type[AzureSearch],
|
|
texts: List[str],
|
|
embedding: Embeddings,
|
|
metadatas: Optional[List[dict]] = None,
|
|
azure_search_endpoint: str = "",
|
|
azure_search_key: str = "",
|
|
index_name: str = "langchain-index",
|
|
fields: Optional[List[SearchField]] = None,
|
|
**kwargs: Any,
|
|
) -> AzureSearch:
|
|
# Creating a new Azure Search instance
|
|
azure_search = cls(
|
|
azure_search_endpoint,
|
|
azure_search_key,
|
|
index_name,
|
|
embedding,
|
|
fields=fields,
|
|
**kwargs,
|
|
)
|
|
await azure_search.aadd_texts(texts, metadatas, **kwargs)
|
|
return azure_search
|
|
|
|
@classmethod
|
|
async def afrom_embeddings(
|
|
cls: Type[AzureSearch],
|
|
text_embeddings: Iterable[Tuple[str, List[float]]],
|
|
embedding: Embeddings,
|
|
metadatas: Optional[List[dict]] = None,
|
|
*,
|
|
azure_search_endpoint: str = "",
|
|
azure_search_key: str = "",
|
|
index_name: str = "langchain-index",
|
|
fields: Optional[List[SearchField]] = None,
|
|
**kwargs: Any,
|
|
) -> AzureSearch:
|
|
text_embeddings, first_text_embedding = _peek(text_embeddings)
|
|
if first_text_embedding is None:
|
|
raise ValueError("Cannot create AzureSearch from empty embeddings.")
|
|
vector_search_dimensions = len(first_text_embedding[1])
|
|
|
|
azure_search = cls(
|
|
azure_search_endpoint=azure_search_endpoint,
|
|
azure_search_key=azure_search_key,
|
|
index_name=index_name,
|
|
embedding_function=embedding,
|
|
fields=fields,
|
|
vector_search_dimensions=vector_search_dimensions,
|
|
**kwargs,
|
|
)
|
|
await azure_search.aadd_embeddings(text_embeddings, metadatas, **kwargs)
|
|
return azure_search
|
|
|
|
@classmethod
|
|
def from_embeddings(
|
|
cls: Type[AzureSearch],
|
|
text_embeddings: Iterable[Tuple[str, List[float]]],
|
|
embedding: Embeddings,
|
|
metadatas: Optional[List[dict]] = None,
|
|
*,
|
|
azure_search_endpoint: str = "",
|
|
azure_search_key: str = "",
|
|
index_name: str = "langchain-index",
|
|
fields: Optional[List[SearchField]] = None,
|
|
**kwargs: Any,
|
|
) -> AzureSearch:
|
|
# Creating a new Azure Search instance
|
|
text_embeddings, first_text_embedding = _peek(text_embeddings)
|
|
if first_text_embedding is None:
|
|
raise ValueError("Cannot create AzureSearch from empty embeddings.")
|
|
vector_search_dimensions = len(first_text_embedding[1])
|
|
|
|
azure_search = cls(
|
|
azure_search_endpoint=azure_search_endpoint,
|
|
azure_search_key=azure_search_key,
|
|
index_name=index_name,
|
|
embedding_function=embedding,
|
|
fields=fields,
|
|
vector_search_dimensions=vector_search_dimensions,
|
|
**kwargs,
|
|
)
|
|
azure_search.add_embeddings(text_embeddings, metadatas, **kwargs)
|
|
return azure_search
|
|
|
|
def as_retriever(self, **kwargs: Any) -> AzureSearchVectorStoreRetriever: # type: ignore
|
|
"""Return AzureSearchVectorStoreRetriever initialized from this VectorStore.
|
|
|
|
Args:
|
|
search_type (Optional[str]): Defines the type of search that
|
|
the Retriever should perform.
|
|
Can be "similarity" (default), "hybrid", or
|
|
"semantic_hybrid".
|
|
search_kwargs (Optional[Dict]): Keyword arguments to pass to the
|
|
search function. Can include things like:
|
|
score_threshold: Minimum relevance threshold
|
|
for similarity_score_threshold
|
|
fetch_k: Amount of documents to pass to MMR algorithm (Default: 20)
|
|
lambda_mult: Diversity of results returned by MMR;
|
|
1 for minimum diversity and 0 for maximum. (Default: 0.5)
|
|
filter: Filter by document metadata
|
|
|
|
Returns:
|
|
AzureSearchVectorStoreRetriever: Retriever class for VectorStore.
|
|
"""
|
|
tags = kwargs.pop("tags", None) or []
|
|
tags.extend(self._get_retriever_tags())
|
|
return AzureSearchVectorStoreRetriever(vectorstore=self, **kwargs, tags=tags)
|
|
|
|
|
|
class AzureSearchVectorStoreRetriever(BaseRetriever):
|
|
"""Retriever that uses `Azure Cognitive Search`."""
|
|
|
|
vectorstore: AzureSearch
|
|
"""Azure Search instance used to find similar documents."""
|
|
search_type: str = "hybrid"
|
|
"""Type of search to perform. Options are "similarity", "hybrid",
|
|
"semantic_hybrid", "similarity_score_threshold", "hybrid_score_threshold",
|
|
or "semantic_hybrid_score_threshold"."""
|
|
k: int = 4
|
|
"""Number of documents to return."""
|
|
search_kwargs: dict = {}
|
|
"""Search params.
|
|
score_threshold: Minimum relevance threshold
|
|
for similarity_score_threshold
|
|
fetch_k: Amount of documents to pass to MMR algorithm (Default: 20)
|
|
lambda_mult: Diversity of results returned by MMR;
|
|
1 for minimum diversity and 0 for maximum. (Default: 0.5)
|
|
filter: Filter by document metadata
|
|
"""
|
|
|
|
allowed_search_types: ClassVar[Collection[str]] = (
|
|
"similarity",
|
|
"similarity_score_threshold",
|
|
"hybrid",
|
|
"hybrid_score_threshold",
|
|
"semantic_hybrid",
|
|
"semantic_hybrid_score_threshold",
|
|
)
|
|
|
|
class Config:
|
|
arbitrary_types_allowed = True
|
|
|
|
@root_validator(pre=True)
|
|
def validate_search_type(cls, values: Dict) -> Dict:
|
|
"""Validate search type."""
|
|
if "search_type" in values:
|
|
search_type = values["search_type"]
|
|
if search_type not in cls.allowed_search_types:
|
|
raise ValueError(
|
|
f"search_type of {search_type} not allowed. Valid values are: "
|
|
f"{cls.allowed_search_types}"
|
|
)
|
|
return values
|
|
|
|
def _get_relevant_documents(
|
|
self,
|
|
query: str,
|
|
run_manager: CallbackManagerForRetrieverRun,
|
|
**kwargs: Any,
|
|
) -> List[Document]:
|
|
params = {**self.search_kwargs, **kwargs}
|
|
|
|
if self.search_type == "similarity":
|
|
docs = self.vectorstore.vector_search(query, k=self.k, **params)
|
|
elif self.search_type == "similarity_score_threshold":
|
|
docs = [
|
|
doc
|
|
for doc, _ in self.vectorstore.similarity_search_with_relevance_scores(
|
|
query, k=self.k, **params
|
|
)
|
|
]
|
|
elif self.search_type == "hybrid":
|
|
docs = self.vectorstore.hybrid_search(query, k=self.k, **params)
|
|
elif self.search_type == "hybrid_score_threshold":
|
|
docs = [
|
|
doc
|
|
for doc, _ in self.vectorstore.hybrid_search_with_relevance_scores(
|
|
query, k=self.k, **params
|
|
)
|
|
]
|
|
elif self.search_type == "semantic_hybrid":
|
|
docs = self.vectorstore.semantic_hybrid_search(query, k=self.k, **params)
|
|
elif self.search_type == "semantic_hybrid_score_threshold":
|
|
docs = [
|
|
doc
|
|
for doc, _ in self.vectorstore.semantic_hybrid_search_with_score(
|
|
query, k=self.k, **params
|
|
)
|
|
]
|
|
else:
|
|
raise ValueError(f"search_type of {self.search_type} not allowed.")
|
|
return docs
|
|
|
|
async def _aget_relevant_documents(
|
|
self,
|
|
query: str,
|
|
*,
|
|
run_manager: AsyncCallbackManagerForRetrieverRun,
|
|
**kwargs: Any,
|
|
) -> List[Document]:
|
|
params = {**self.search_kwargs, **kwargs}
|
|
|
|
if self.search_type == "similarity":
|
|
docs = await self.vectorstore.avector_search(query, k=self.k, **params)
|
|
elif self.search_type == "similarity_score_threshold":
|
|
docs_and_scores = (
|
|
await self.vectorstore.asimilarity_search_with_relevance_scores(
|
|
query, k=self.k, **params
|
|
)
|
|
)
|
|
docs = [doc for doc, _ in docs_and_scores]
|
|
elif self.search_type == "hybrid":
|
|
docs = await self.vectorstore.ahybrid_search(query, k=self.k, **params)
|
|
elif self.search_type == "hybrid_score_threshold":
|
|
docs_and_scores = (
|
|
await self.vectorstore.ahybrid_search_with_relevance_scores(
|
|
query, k=self.k, **params
|
|
)
|
|
)
|
|
docs = [doc for doc, _ in docs_and_scores]
|
|
elif self.search_type == "semantic_hybrid":
|
|
docs = await self.vectorstore.asemantic_hybrid_search(
|
|
query, k=self.k, **params
|
|
)
|
|
elif self.search_type == "semantic_hybrid_score_threshold":
|
|
docs = [
|
|
doc
|
|
for doc, _ in await self.vectorstore.asemantic_hybrid_search_with_score(
|
|
query, k=self.k, **params
|
|
)
|
|
]
|
|
else:
|
|
raise ValueError(f"search_type of {self.search_type} not allowed.")
|
|
return docs
|
|
|
|
|
|
def _results_to_documents(
|
|
results: SearchItemPaged[Dict],
|
|
) -> List[Tuple[Document, float]]:
|
|
docs = [
|
|
(
|
|
_result_to_document(result),
|
|
float(result["@search.score"]),
|
|
)
|
|
for result in results
|
|
]
|
|
return docs
|
|
|
|
|
|
async def _aresults_to_documents(
|
|
results: AsyncSearchItemPaged[Dict],
|
|
) -> List[Tuple[Document, float]]:
|
|
docs = [
|
|
(
|
|
_result_to_document(result),
|
|
float(result["@search.score"]),
|
|
)
|
|
async for result in results
|
|
]
|
|
return docs
|
|
|
|
|
|
async def _areorder_results_with_maximal_marginal_relevance(
|
|
results: SearchItemPaged[Dict],
|
|
query_embedding: np.ndarray,
|
|
lambda_mult: float = 0.5,
|
|
k: int = 4,
|
|
) -> List[Tuple[Document, float]]:
|
|
# Convert results to Document objects
|
|
docs = [
|
|
(
|
|
_result_to_document(result),
|
|
float(result["@search.score"]),
|
|
result[FIELDS_CONTENT_VECTOR],
|
|
)
|
|
async for result in results
|
|
]
|
|
documents, scores, vectors = map(list, zip(*docs))
|
|
|
|
# Get the new order of results.
|
|
new_ordering = maximal_marginal_relevance(
|
|
query_embedding, vectors, k=k, lambda_mult=lambda_mult
|
|
)
|
|
|
|
# Reorder the values and return.
|
|
ret: List[Tuple[Document, float]] = []
|
|
for x in new_ordering:
|
|
# Function can return -1 index
|
|
if x == -1:
|
|
break
|
|
ret.append((documents[x], scores[x])) # type: ignore
|
|
|
|
return ret
|
|
|
|
|
|
def _reorder_results_with_maximal_marginal_relevance(
|
|
results: SearchItemPaged[Dict],
|
|
query_embedding: np.ndarray,
|
|
lambda_mult: float = 0.5,
|
|
k: int = 4,
|
|
) -> List[Tuple[Document, float]]:
|
|
# Convert results to Document objects
|
|
docs = [
|
|
(
|
|
_result_to_document(result),
|
|
float(result["@search.score"]),
|
|
result[FIELDS_CONTENT_VECTOR],
|
|
)
|
|
for result in results
|
|
]
|
|
documents, scores, vectors = map(list, zip(*docs))
|
|
|
|
# Get the new order of results.
|
|
new_ordering = maximal_marginal_relevance(
|
|
query_embedding, vectors, k=k, lambda_mult=lambda_mult
|
|
)
|
|
|
|
# Reorder the values and return.
|
|
ret: List[Tuple[Document, float]] = []
|
|
for x in new_ordering:
|
|
# Function can return -1 index
|
|
if x == -1:
|
|
break
|
|
ret.append((documents[x], scores[x])) # type: ignore
|
|
|
|
return ret
|
|
|
|
|
|
def _result_to_document(result: Dict) -> Document:
|
|
return Document(
|
|
page_content=result.pop(FIELDS_CONTENT),
|
|
metadata=json.loads(result[FIELDS_METADATA])
|
|
if FIELDS_METADATA in result
|
|
else {
|
|
key: value for key, value in result.items() if key != FIELDS_CONTENT_VECTOR
|
|
},
|
|
)
|
|
|
|
|
|
def _peek(iterable: Iterable, default: Optional[Any] = None) -> Tuple[Iterable, Any]:
|
|
try:
|
|
iterator = iter(iterable)
|
|
value = next(iterator)
|
|
iterable = itertools.chain([value], iterator)
|
|
return iterable, value
|
|
except StopIteration:
|
|
return iterable, default
|