mirror of
https://github.com/hwchase17/langchain.git
synced 2025-08-23 03:22:38 +00:00
Fix: 
67 lines
2.3 KiB
Python
67 lines
2.3 KiB
Python
from __future__ import annotations
|
|
|
|
from io import IOBase
|
|
from typing import TYPE_CHECKING, Any, List, Optional, Union
|
|
|
|
from langchain_experimental.agents.agent_toolkits.pandas.base import (
|
|
create_pandas_dataframe_agent,
|
|
)
|
|
|
|
if TYPE_CHECKING:
|
|
from langchain.agents.agent import AgentExecutor
|
|
from langchain_core.language_models import LanguageModelLike
|
|
|
|
|
|
def create_csv_agent(
|
|
llm: LanguageModelLike,
|
|
path: Union[str, IOBase, List[Union[str, IOBase]]],
|
|
pandas_kwargs: Optional[dict] = None,
|
|
**kwargs: Any,
|
|
) -> AgentExecutor:
|
|
"""Create pandas dataframe agent by loading csv to a dataframe.
|
|
|
|
Args:
|
|
llm: Language model to use for the agent.
|
|
path: A string path, file-like object or a list of string paths/file-like
|
|
objects that can be read in as pandas DataFrames with pd.read_csv().
|
|
pandas_kwargs: Named arguments to pass to pd.read_csv().
|
|
kwargs: Additional kwargs to pass to langchain_experimental.agents.agent_toolkits.pandas.base.create_pandas_dataframe_agent().
|
|
|
|
Returns:
|
|
An AgentExecutor with the specified agent_type agent and access to
|
|
a PythonAstREPLTool with the loaded DataFrame(s) and any user-provided extra_tools.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_openai import ChatOpenAI
|
|
from langchain_experimental.agents import create_csv_agent
|
|
|
|
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)
|
|
agent_executor = create_pandas_dataframe_agent(
|
|
llm,
|
|
"titanic.csv",
|
|
agent_type="openai-tools",
|
|
verbose=True
|
|
)
|
|
""" # noqa: E501
|
|
try:
|
|
import pandas as pd
|
|
except ImportError:
|
|
raise ImportError(
|
|
"pandas package not found, please install with `pip install pandas`."
|
|
)
|
|
|
|
_kwargs = pandas_kwargs or {}
|
|
if isinstance(path, (str, IOBase)):
|
|
df = pd.read_csv(path, **_kwargs)
|
|
elif isinstance(path, list):
|
|
df = []
|
|
for item in path:
|
|
if not isinstance(item, (str, IOBase)):
|
|
raise ValueError(f"Expected str or file-like object, got {type(path)}")
|
|
df.append(pd.read_csv(item, **_kwargs))
|
|
else:
|
|
raise ValueError(f"Expected str, list, or file-like object, got {type(path)}")
|
|
return create_pandas_dataframe_agent(llm, df, **kwargs)
|