mirror of
https://github.com/hwchase17/langchain.git
synced 2025-08-16 08:06:14 +00:00
Migrate pydantic extra to literals Upgrade to using a literal for specifying the extra which is the recommended approach in pydantic 2. This works correctly also in pydantic v1. ```python from pydantic.v1 import BaseModel class Foo(BaseModel, extra="forbid"): x: int Foo(x=5, y=1) ``` And ```python from pydantic.v1 import BaseModel class Foo(BaseModel): x: int class Config: extra = "forbid" Foo(x=5, y=1) ``` ## Enum -> literal using grit pattern: ``` engine marzano(0.1) language python or { `extra=Extra.allow` => `extra="allow"`, `extra=Extra.forbid` => `extra="forbid"`, `extra=Extra.ignore` => `extra="ignore"` } ``` Resorted attributes in config and removed doc-string in case we will need to deal with going back and forth between pydantic v1 and v2 during the 0.3 release. (This will reduce merge conflicts.) ## Sort attributes in Config: ``` engine marzano(0.1) language python function sort($values) js { return $values.text.split(',').sort().join("\n"); } class_definition($name, $body) as $C where { $name <: `Config`, $body <: block($statements), $values = [], $statements <: some bubble($values) assignment() as $A where { $values += $A }, $body => sort($values), } ```
160 lines
5.6 KiB
Python
160 lines
5.6 KiB
Python
"""Chain that interprets a prompt and executes python code to do symbolic math."""
|
|
|
|
from __future__ import annotations
|
|
|
|
import re
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
from langchain.base_language import BaseLanguageModel
|
|
from langchain.chains.base import Chain
|
|
from langchain.chains.llm import LLMChain
|
|
from langchain_core.callbacks.manager import (
|
|
AsyncCallbackManagerForChainRun,
|
|
CallbackManagerForChainRun,
|
|
)
|
|
from langchain_core.prompts.base import BasePromptTemplate
|
|
|
|
from langchain_experimental.llm_symbolic_math.prompt import PROMPT
|
|
|
|
|
|
class LLMSymbolicMathChain(Chain):
|
|
"""Chain that interprets a prompt and executes python code to do symbolic math.
|
|
|
|
It is based on the sympy library and can be used to evaluate
|
|
mathematical expressions.
|
|
See https://www.sympy.org/ for more information.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain.chains import LLMSymbolicMathChain
|
|
from langchain_community.llms import OpenAI
|
|
llm_symbolic_math = LLMSymbolicMathChain.from_llm(OpenAI())
|
|
"""
|
|
|
|
llm_chain: LLMChain
|
|
input_key: str = "question" #: :meta private:
|
|
output_key: str = "answer" #: :meta private:
|
|
|
|
class Config:
|
|
arbitrary_types_allowed = True
|
|
extra = "forbid"
|
|
|
|
@property
|
|
def input_keys(self) -> List[str]:
|
|
"""Expect input key.
|
|
|
|
:meta private:
|
|
"""
|
|
return [self.input_key]
|
|
|
|
@property
|
|
def output_keys(self) -> List[str]:
|
|
"""Expect output key.
|
|
|
|
:meta private:
|
|
"""
|
|
return [self.output_key]
|
|
|
|
def _evaluate_expression(self, expression: str) -> str:
|
|
try:
|
|
import sympy
|
|
except ImportError as e:
|
|
raise ImportError(
|
|
"Unable to import sympy, please install it with `pip install sympy`."
|
|
) from e
|
|
try:
|
|
output = str(sympy.sympify(expression, evaluate=True))
|
|
except Exception as e:
|
|
raise ValueError(
|
|
f'LLMSymbolicMathChain._evaluate("{expression}") raised error: {e}.'
|
|
" Please try again with a valid numerical expression"
|
|
)
|
|
|
|
# Remove any leading and trailing brackets from the output
|
|
return re.sub(r"^\[|\]$", "", output)
|
|
|
|
def _process_llm_result(
|
|
self, llm_output: str, run_manager: CallbackManagerForChainRun
|
|
) -> Dict[str, str]:
|
|
run_manager.on_text(llm_output, color="green", verbose=self.verbose)
|
|
llm_output = llm_output.strip()
|
|
text_match = re.search(r"^```text(.*?)```", llm_output, re.DOTALL)
|
|
if text_match:
|
|
expression = text_match.group(1)
|
|
output = self._evaluate_expression(expression)
|
|
run_manager.on_text("\nAnswer: ", verbose=self.verbose)
|
|
run_manager.on_text(output, color="yellow", verbose=self.verbose)
|
|
answer = "Answer: " + output
|
|
elif llm_output.startswith("Answer:"):
|
|
answer = llm_output
|
|
elif "Answer:" in llm_output:
|
|
answer = "Answer: " + llm_output.split("Answer:")[-1]
|
|
else:
|
|
raise ValueError(f"unknown format from LLM: {llm_output}")
|
|
return {self.output_key: answer}
|
|
|
|
async def _aprocess_llm_result(
|
|
self,
|
|
llm_output: str,
|
|
run_manager: AsyncCallbackManagerForChainRun,
|
|
) -> Dict[str, str]:
|
|
await run_manager.on_text(llm_output, color="green", verbose=self.verbose)
|
|
llm_output = llm_output.strip()
|
|
text_match = re.search(r"^```text(.*?)```", llm_output, re.DOTALL)
|
|
if text_match:
|
|
expression = text_match.group(1)
|
|
output = self._evaluate_expression(expression)
|
|
await run_manager.on_text("\nAnswer: ", verbose=self.verbose)
|
|
await run_manager.on_text(output, color="yellow", verbose=self.verbose)
|
|
answer = "Answer: " + output
|
|
elif llm_output.startswith("Answer:"):
|
|
answer = llm_output
|
|
elif "Answer:" in llm_output:
|
|
answer = "Answer: " + llm_output.split("Answer:")[-1]
|
|
else:
|
|
raise ValueError(f"unknown format from LLM: {llm_output}")
|
|
return {self.output_key: answer}
|
|
|
|
def _call(
|
|
self,
|
|
inputs: Dict[str, str],
|
|
run_manager: Optional[CallbackManagerForChainRun] = None,
|
|
) -> Dict[str, str]:
|
|
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
|
|
_run_manager.on_text(inputs[self.input_key])
|
|
llm_output = self.llm_chain.predict(
|
|
question=inputs[self.input_key],
|
|
stop=["```output"],
|
|
callbacks=_run_manager.get_child(),
|
|
)
|
|
return self._process_llm_result(llm_output, _run_manager)
|
|
|
|
async def _acall(
|
|
self,
|
|
inputs: Dict[str, str],
|
|
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
|
|
) -> Dict[str, str]:
|
|
_run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager()
|
|
await _run_manager.on_text(inputs[self.input_key])
|
|
llm_output = await self.llm_chain.apredict(
|
|
question=inputs[self.input_key],
|
|
stop=["```output"],
|
|
callbacks=_run_manager.get_child(),
|
|
)
|
|
return await self._aprocess_llm_result(llm_output, _run_manager)
|
|
|
|
@property
|
|
def _chain_type(self) -> str:
|
|
return "llm_symbolic_math_chain"
|
|
|
|
@classmethod
|
|
def from_llm(
|
|
cls,
|
|
llm: BaseLanguageModel,
|
|
prompt: BasePromptTemplate = PROMPT,
|
|
**kwargs: Any,
|
|
) -> LLMSymbolicMathChain:
|
|
llm_chain = LLMChain(llm=llm, prompt=prompt)
|
|
return cls(llm_chain=llm_chain, **kwargs)
|