mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-08 07:57:07 +00:00
```python """python scripts/update_mypy_ruff.py""" import glob import tomllib from pathlib import Path import toml import subprocess import re ROOT_DIR = Path(__file__).parents[1] def main(): for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True): print(path) with open(path, "rb") as f: pyproject = tomllib.load(f) try: pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = ( "^1.10" ) pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = ( "^0.5" ) except KeyError: continue with open(path, "w") as f: toml.dump(pyproject, f) cwd = "/".join(path.split("/")[:-1]) completed = subprocess.run( "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color", cwd=cwd, shell=True, capture_output=True, text=True, ) logs = completed.stdout.split("\n") to_ignore = {} for l in logs: if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l): path, line_no, error_type = re.match( "^(.*)\:(\d+)\: error:.*\[(.*)\]", l ).groups() if (path, line_no) in to_ignore: to_ignore[(path, line_no)].append(error_type) else: to_ignore[(path, line_no)] = [error_type] print(len(to_ignore)) for (error_path, line_no), error_types in to_ignore.items(): all_errors = ", ".join(error_types) full_path = f"{cwd}/{error_path}" try: with open(full_path, "r") as f: file_lines = f.readlines() except FileNotFoundError: continue file_lines[int(line_no) - 1] = ( file_lines[int(line_no) - 1][:-1] + f" # type: ignore[{all_errors}]\n" ) with open(full_path, "w") as f: f.write("".join(file_lines)) subprocess.run( "poetry run ruff format .; poetry run ruff --select I --fix .", cwd=cwd, shell=True, capture_output=True, text=True, ) if __name__ == "__main__": main() ```
94 lines
3.6 KiB
Python
94 lines
3.6 KiB
Python
"""Test SQL Database Chain."""
|
|
|
|
from langchain_community.llms.openai import OpenAI
|
|
from langchain_community.utilities.sql_database import SQLDatabase
|
|
from sqlalchemy import Column, Integer, MetaData, String, Table, create_engine, insert
|
|
|
|
from langchain_experimental.sql.base import (
|
|
SQLDatabaseChain,
|
|
SQLDatabaseSequentialChain,
|
|
)
|
|
|
|
metadata_obj = MetaData()
|
|
|
|
user = Table(
|
|
"user",
|
|
metadata_obj,
|
|
Column("user_id", Integer, primary_key=True),
|
|
Column("user_name", String(16), nullable=False),
|
|
Column("user_company", String(16), nullable=False),
|
|
)
|
|
|
|
|
|
def test_sql_database_run() -> None:
|
|
"""Test that commands can be run successfully and returned in correct format."""
|
|
engine = create_engine("sqlite:///:memory:")
|
|
metadata_obj.create_all(engine)
|
|
stmt = insert(user).values(user_id=13, user_name="Harrison", user_company="Foo")
|
|
with engine.connect() as conn:
|
|
conn.execute(stmt)
|
|
db = SQLDatabase(engine)
|
|
db_chain = SQLDatabaseChain.from_llm(OpenAI(temperature=0), db)
|
|
output = db_chain.run("What company does Harrison work at?")
|
|
expected_output = " Harrison works at Foo."
|
|
assert output == expected_output
|
|
|
|
|
|
def test_sql_database_run_update() -> None:
|
|
"""Test that update commands run successfully and returned in correct format."""
|
|
engine = create_engine("sqlite:///:memory:")
|
|
metadata_obj.create_all(engine)
|
|
stmt = insert(user).values(user_id=13, user_name="Harrison", user_company="Foo")
|
|
with engine.connect() as conn:
|
|
conn.execute(stmt)
|
|
db = SQLDatabase(engine)
|
|
db_chain = SQLDatabaseChain.from_llm(OpenAI(temperature=0), db)
|
|
output = db_chain.run("Update Harrison's workplace to Bar")
|
|
expected_output = " Harrison's workplace has been updated to Bar."
|
|
assert output == expected_output
|
|
output = db_chain.run("What company does Harrison work at?")
|
|
expected_output = " Harrison works at Bar."
|
|
assert output == expected_output
|
|
|
|
|
|
def test_sql_database_sequential_chain_run() -> None:
|
|
"""Test that commands can be run successfully SEQUENTIALLY
|
|
and returned in correct format."""
|
|
engine = create_engine("sqlite:///:memory:")
|
|
metadata_obj.create_all(engine)
|
|
stmt = insert(user).values(user_id=13, user_name="Harrison", user_company="Foo")
|
|
with engine.connect() as conn:
|
|
conn.execute(stmt)
|
|
db = SQLDatabase(engine)
|
|
db_chain = SQLDatabaseSequentialChain.from_llm(OpenAI(temperature=0), db)
|
|
output = db_chain.run("What company does Harrison work at?")
|
|
expected_output = " Harrison works at Foo."
|
|
assert output == expected_output
|
|
|
|
|
|
def test_sql_database_sequential_chain_intermediate_steps() -> None:
|
|
"""Test that commands can be run successfully SEQUENTIALLY and returned
|
|
in correct format. switch Intermediate steps"""
|
|
engine = create_engine("sqlite:///:memory:")
|
|
metadata_obj.create_all(engine)
|
|
stmt = insert(user).values(user_id=13, user_name="Harrison", user_company="Foo")
|
|
with engine.connect() as conn:
|
|
conn.execute(stmt)
|
|
db = SQLDatabase(engine)
|
|
db_chain = SQLDatabaseSequentialChain.from_llm(
|
|
OpenAI(temperature=0), db, return_intermediate_steps=True
|
|
)
|
|
output = db_chain("What company does Harrison work at?")
|
|
expected_output = " Harrison works at Foo."
|
|
assert output["result"] == expected_output
|
|
|
|
query = output["intermediate_steps"][0]
|
|
expected_query = (
|
|
" SELECT user_company FROM user WHERE user_name = 'Harrison' LIMIT 1;"
|
|
)
|
|
assert query == expected_query
|
|
|
|
query_results = output["intermediate_steps"][1]
|
|
expected_query_results = "[('Foo',)]"
|
|
assert query_results == expected_query_results
|