mirror of
https://github.com/hwchase17/langchain.git
synced 2025-08-18 09:01:03 +00:00
```python """python scripts/update_mypy_ruff.py""" import glob import tomllib from pathlib import Path import toml import subprocess import re ROOT_DIR = Path(__file__).parents[1] def main(): for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True): print(path) with open(path, "rb") as f: pyproject = tomllib.load(f) try: pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = ( "^1.10" ) pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = ( "^0.5" ) except KeyError: continue with open(path, "w") as f: toml.dump(pyproject, f) cwd = "/".join(path.split("/")[:-1]) completed = subprocess.run( "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color", cwd=cwd, shell=True, capture_output=True, text=True, ) logs = completed.stdout.split("\n") to_ignore = {} for l in logs: if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l): path, line_no, error_type = re.match( "^(.*)\:(\d+)\: error:.*\[(.*)\]", l ).groups() if (path, line_no) in to_ignore: to_ignore[(path, line_no)].append(error_type) else: to_ignore[(path, line_no)] = [error_type] print(len(to_ignore)) for (error_path, line_no), error_types in to_ignore.items(): all_errors = ", ".join(error_types) full_path = f"{cwd}/{error_path}" try: with open(full_path, "r") as f: file_lines = f.readlines() except FileNotFoundError: continue file_lines[int(line_no) - 1] = ( file_lines[int(line_no) - 1][:-1] + f" # type: ignore[{all_errors}]\n" ) with open(full_path, "w") as f: f.write("".join(file_lines)) subprocess.run( "poetry run ruff format .; poetry run ruff --select I --fix .", cwd=cwd, shell=True, capture_output=True, text=True, ) if __name__ == "__main__": main() ```
110 lines
4.0 KiB
Python
110 lines
4.0 KiB
Python
"""Test AnthropicFunctions"""
|
|
|
|
import unittest
|
|
|
|
from langchain_community.chat_models.anthropic import ChatAnthropic
|
|
from langchain_community.chat_models.bedrock import BedrockChat
|
|
|
|
from langchain_experimental.llms.anthropic_functions import AnthropicFunctions
|
|
|
|
|
|
class TestAnthropicFunctions(unittest.TestCase):
|
|
"""
|
|
Test AnthropicFunctions with default llm (ChatAnthropic) as well as a passed-in llm
|
|
"""
|
|
|
|
def test_default_chat_anthropic(self) -> None:
|
|
base_model = AnthropicFunctions(model="claude-2") # type: ignore[call-arg]
|
|
self.assertIsInstance(base_model.model, ChatAnthropic)
|
|
|
|
# bind functions
|
|
model = base_model.bind(
|
|
functions=[
|
|
{
|
|
"name": "get_current_weather",
|
|
"description": "Get the current weather in a given location",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
"location": {
|
|
"type": "string",
|
|
"description": "The city and state, "
|
|
"e.g. San Francisco, CA",
|
|
},
|
|
"unit": {
|
|
"type": "string",
|
|
"enum": ["celsius", "fahrenheit"],
|
|
},
|
|
},
|
|
"required": ["location"],
|
|
},
|
|
}
|
|
],
|
|
function_call={"name": "get_current_weather"},
|
|
)
|
|
|
|
res = model.invoke("What's the weather in San Francisco?")
|
|
|
|
function_call = res.additional_kwargs.get("function_call")
|
|
assert function_call
|
|
self.assertEqual(function_call.get("name"), "get_current_weather")
|
|
self.assertEqual(
|
|
function_call.get("arguments"),
|
|
'{"location": "San Francisco, CA", "unit": "fahrenheit"}',
|
|
)
|
|
|
|
def test_bedrock_chat_anthropic(self) -> None:
|
|
"""
|
|
const chatBedrock = new ChatBedrock({
|
|
region: process.env.BEDROCK_AWS_REGION ?? "us-east-1",
|
|
model: "anthropic.claude-v2",
|
|
temperature: 0.1,
|
|
credentials: {
|
|
secretAccessKey: process.env.BEDROCK_AWS_SECRET_ACCESS_KEY!,
|
|
accessKeyId: process.env.BEDROCK_AWS_ACCESS_KEY_ID!,
|
|
},
|
|
});"""
|
|
llm = BedrockChat( # type: ignore[call-arg]
|
|
model_id="anthropic.claude-v2",
|
|
model_kwargs={"temperature": 0.1},
|
|
region_name="us-east-1",
|
|
)
|
|
base_model = AnthropicFunctions(llm=llm)
|
|
assert isinstance(base_model.model, BedrockChat)
|
|
|
|
# bind functions
|
|
model = base_model.bind(
|
|
functions=[
|
|
{
|
|
"name": "get_current_weather",
|
|
"description": "Get the current weather in a given location",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
"location": {
|
|
"type": "string",
|
|
"description": "The city and state, "
|
|
"e.g. San Francisco, CA",
|
|
},
|
|
"unit": {
|
|
"type": "string",
|
|
"enum": ["celsius", "fahrenheit"],
|
|
},
|
|
},
|
|
"required": ["location"],
|
|
},
|
|
}
|
|
],
|
|
function_call={"name": "get_current_weather"},
|
|
)
|
|
|
|
res = model.invoke("What's the weather in San Francisco?")
|
|
|
|
function_call = res.additional_kwargs.get("function_call")
|
|
assert function_call
|
|
self.assertEqual(function_call.get("name"), "get_current_weather")
|
|
self.assertEqual(
|
|
function_call.get("arguments"),
|
|
'{"location": "San Francisco, CA", "unit": "fahrenheit"}',
|
|
)
|