langchain/libs/experimental/tests/integration_tests/llms/test_ollama_functions.py
Bagatur a0c2281540
infra: update mypy 1.10, ruff 0.5 (#23721)
```python
"""python scripts/update_mypy_ruff.py"""
import glob
import tomllib
from pathlib import Path

import toml
import subprocess
import re

ROOT_DIR = Path(__file__).parents[1]


def main():
    for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True):
        print(path)
        with open(path, "rb") as f:
            pyproject = tomllib.load(f)
        try:
            pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = (
                "^1.10"
            )
            pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = (
                "^0.5"
            )
        except KeyError:
            continue
        with open(path, "w") as f:
            toml.dump(pyproject, f)
        cwd = "/".join(path.split("/")[:-1])
        completed = subprocess.run(
            "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color",
            cwd=cwd,
            shell=True,
            capture_output=True,
            text=True,
        )
        logs = completed.stdout.split("\n")

        to_ignore = {}
        for l in logs:
            if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l):
                path, line_no, error_type = re.match(
                    "^(.*)\:(\d+)\: error:.*\[(.*)\]", l
                ).groups()
                if (path, line_no) in to_ignore:
                    to_ignore[(path, line_no)].append(error_type)
                else:
                    to_ignore[(path, line_no)] = [error_type]
        print(len(to_ignore))
        for (error_path, line_no), error_types in to_ignore.items():
            all_errors = ", ".join(error_types)
            full_path = f"{cwd}/{error_path}"
            try:
                with open(full_path, "r") as f:
                    file_lines = f.readlines()
            except FileNotFoundError:
                continue
            file_lines[int(line_no) - 1] = (
                file_lines[int(line_no) - 1][:-1] + f"  # type: ignore[{all_errors}]\n"
            )
            with open(full_path, "w") as f:
                f.write("".join(file_lines))

        subprocess.run(
            "poetry run ruff format .; poetry run ruff --select I --fix .",
            cwd=cwd,
            shell=True,
            capture_output=True,
            text=True,
        )


if __name__ == "__main__":
    main()

```
2024-07-03 10:33:27 -07:00

143 lines
5.1 KiB
Python

"""Test OllamaFunctions"""
import unittest
from langchain_community.tools import DuckDuckGoSearchResults
from langchain_community.tools.pubmed.tool import PubmedQueryRun
from langchain_core.messages import AIMessage
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_experimental.llms.ollama_functions import (
OllamaFunctions,
convert_to_ollama_tool,
)
class Joke(BaseModel):
setup: str = Field(description="The setup of the joke")
punchline: str = Field(description="The punchline to the joke")
class TestOllamaFunctions(unittest.TestCase):
"""
Test OllamaFunctions
"""
def test_default_ollama_functions(self) -> None:
base_model = OllamaFunctions(model="phi3", format="json")
# bind functions
model = base_model.bind_tools(
tools=[
{
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, "
"e.g. San Francisco, CA",
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
},
},
"required": ["location"],
},
}
],
function_call={"name": "get_current_weather"},
)
res = model.invoke("What's the weather in San Francisco?")
self.assertIsInstance(res, AIMessage)
res = AIMessage(**res.__dict__)
tool_calls = res.tool_calls
assert tool_calls
tool_call = tool_calls[0]
assert tool_call
self.assertEqual("get_current_weather", tool_call.get("name"))
def test_ollama_functions_tools(self) -> None:
base_model = OllamaFunctions(model="phi3", format="json")
model = base_model.bind_tools(
tools=[PubmedQueryRun(), DuckDuckGoSearchResults(max_results=2)] # type: ignore[call-arg]
)
res = model.invoke("What causes lung cancer?")
self.assertIsInstance(res, AIMessage)
res = AIMessage(**res.__dict__)
tool_calls = res.tool_calls
assert tool_calls
tool_call = tool_calls[0]
assert tool_call
self.assertEqual("pub_med", tool_call.get("name"))
def test_default_ollama_functions_default_response(self) -> None:
base_model = OllamaFunctions(model="phi3", format="json")
# bind functions
model = base_model.bind_tools(
tools=[
{
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, "
"e.g. San Francisco, CA",
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
},
},
"required": ["location"],
},
}
]
)
res = model.invoke("What is the capital of France?")
self.assertIsInstance(res, AIMessage)
res = AIMessage(**res.__dict__)
tool_calls = res.tool_calls
if len(tool_calls) > 0:
tool_call = tool_calls[0]
assert tool_call
self.assertEqual("__conversational_response", tool_call.get("name"))
def test_ollama_structured_output(self) -> None:
model = OllamaFunctions(model="phi3")
structured_llm = model.with_structured_output(Joke, include_raw=False)
res = structured_llm.invoke("Tell me a joke about cats")
assert isinstance(res, Joke)
def test_ollama_structured_output_with_json(self) -> None:
model = OllamaFunctions(model="phi3")
joke_schema = convert_to_ollama_tool(Joke)
structured_llm = model.with_structured_output(joke_schema, include_raw=False)
res = structured_llm.invoke("Tell me a joke about cats")
assert "setup" in res
assert "punchline" in res
def test_ollama_structured_output_raw(self) -> None:
model = OllamaFunctions(model="phi3")
structured_llm = model.with_structured_output(Joke, include_raw=True)
res = structured_llm.invoke("Tell me a joke about cars")
assert isinstance(res, dict)
assert "raw" in res
assert "parsed" in res
assert isinstance(res["raw"], AIMessage)
assert isinstance(res["parsed"], Joke)