langchain/libs/partners/ai21/tests/unit_tests/test_contextual_answers.py
Bagatur a0c2281540
infra: update mypy 1.10, ruff 0.5 (#23721)
```python
"""python scripts/update_mypy_ruff.py"""
import glob
import tomllib
from pathlib import Path

import toml
import subprocess
import re

ROOT_DIR = Path(__file__).parents[1]


def main():
    for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True):
        print(path)
        with open(path, "rb") as f:
            pyproject = tomllib.load(f)
        try:
            pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = (
                "^1.10"
            )
            pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = (
                "^0.5"
            )
        except KeyError:
            continue
        with open(path, "w") as f:
            toml.dump(pyproject, f)
        cwd = "/".join(path.split("/")[:-1])
        completed = subprocess.run(
            "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color",
            cwd=cwd,
            shell=True,
            capture_output=True,
            text=True,
        )
        logs = completed.stdout.split("\n")

        to_ignore = {}
        for l in logs:
            if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l):
                path, line_no, error_type = re.match(
                    "^(.*)\:(\d+)\: error:.*\[(.*)\]", l
                ).groups()
                if (path, line_no) in to_ignore:
                    to_ignore[(path, line_no)].append(error_type)
                else:
                    to_ignore[(path, line_no)] = [error_type]
        print(len(to_ignore))
        for (error_path, line_no), error_types in to_ignore.items():
            all_errors = ", ".join(error_types)
            full_path = f"{cwd}/{error_path}"
            try:
                with open(full_path, "r") as f:
                    file_lines = f.readlines()
            except FileNotFoundError:
                continue
            file_lines[int(line_no) - 1] = (
                file_lines[int(line_no) - 1][:-1] + f"  # type: ignore[{all_errors}]\n"
            )
            with open(full_path, "w") as f:
                f.write("".join(file_lines))

        subprocess.run(
            "poetry run ruff format .; poetry run ruff --select I --fix .",
            cwd=cwd,
            shell=True,
            capture_output=True,
            text=True,
        )


if __name__ == "__main__":
    main()

```
2024-07-03 10:33:27 -07:00

110 lines
3.2 KiB
Python

from unittest.mock import Mock
import pytest
from langchain_core.documents import Document
from langchain_ai21 import AI21ContextualAnswers
from langchain_ai21.contextual_answers import ContextualAnswerInput
from tests.unit_tests.conftest import DUMMY_API_KEY
@pytest.mark.parametrize(
ids=[
"when_no_context__should_raise_exception",
"when_no_question__should_raise_exception",
"when_question_is_an_empty_string__should_raise_exception",
"when_context_is_an_empty_string__should_raise_exception",
"when_context_is_an_empty_list",
],
argnames="input",
argvalues=[
({"question": "What is the capital of France?"}),
({"context": "Paris is the capital of France"}),
({"question": "", "context": "Paris is the capital of France"}),
({"context": "", "question": "some question?"}),
({"context": [], "question": "What is the capital of France?"}),
],
)
def test_invoke__on_bad_input(
input: ContextualAnswerInput,
mock_client_with_contextual_answers: Mock,
) -> None:
tsm = AI21ContextualAnswers(
api_key=DUMMY_API_KEY, # type: ignore[arg-type]
client=mock_client_with_contextual_answers, # type: ignore[arg-type]
)
with pytest.raises(ValueError) as error:
tsm.invoke(input)
assert (
error.value.args[0]
== f"Input must contain a 'context' and 'question' fields. Got {input}"
)
@pytest.mark.parametrize(
ids=[
"when_context_is_not_str_or_list_of_docs_or_str",
],
argnames="input",
argvalues=[
({"context": 1242, "question": "What is the capital of France?"}),
],
)
def test_invoke__on_context_bad_input(
input: ContextualAnswerInput, mock_client_with_contextual_answers: Mock
) -> None:
tsm = AI21ContextualAnswers(
api_key=DUMMY_API_KEY, # type: ignore[arg-type]
client=mock_client_with_contextual_answers,
)
with pytest.raises(ValueError) as error:
tsm.invoke(input)
assert (
error.value.args[0] == f"Expected input to be a list of strings or Documents."
f" Received {type(input)}"
)
@pytest.mark.parametrize(
ids=[
"when_context_is_a_list_of_strings",
"when_context_is_a_list_of_documents",
"when_context_is_a_string",
],
argnames="input",
argvalues=[
(
{
"context": ["Paris is the capital of france"],
"question": "What is the capital of France?",
}
),
(
{
"context": [Document(page_content="Paris is the capital of france")],
"question": "What is the capital of France?",
}
),
(
{
"context": "Paris is the capital of france",
"question": "What is the capital of France?",
}
),
],
)
def test_invoke__on_good_input(
input: ContextualAnswerInput, mock_client_with_contextual_answers: Mock
) -> None:
tsm = AI21ContextualAnswers(
api_key=DUMMY_API_KEY, # type: ignore[arg-type]
client=mock_client_with_contextual_answers,
)
response = tsm.invoke(input)
assert isinstance(response, str)