mirror of
https://github.com/hwchase17/langchain.git
synced 2025-08-16 08:06:14 +00:00
```python """python scripts/update_mypy_ruff.py""" import glob import tomllib from pathlib import Path import toml import subprocess import re ROOT_DIR = Path(__file__).parents[1] def main(): for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True): print(path) with open(path, "rb") as f: pyproject = tomllib.load(f) try: pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = ( "^1.10" ) pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = ( "^0.5" ) except KeyError: continue with open(path, "w") as f: toml.dump(pyproject, f) cwd = "/".join(path.split("/")[:-1]) completed = subprocess.run( "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color", cwd=cwd, shell=True, capture_output=True, text=True, ) logs = completed.stdout.split("\n") to_ignore = {} for l in logs: if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l): path, line_no, error_type = re.match( "^(.*)\:(\d+)\: error:.*\[(.*)\]", l ).groups() if (path, line_no) in to_ignore: to_ignore[(path, line_no)].append(error_type) else: to_ignore[(path, line_no)] = [error_type] print(len(to_ignore)) for (error_path, line_no), error_types in to_ignore.items(): all_errors = ", ".join(error_types) full_path = f"{cwd}/{error_path}" try: with open(full_path, "r") as f: file_lines = f.readlines() except FileNotFoundError: continue file_lines[int(line_no) - 1] = ( file_lines[int(line_no) - 1][:-1] + f" # type: ignore[{all_errors}]\n" ) with open(full_path, "w") as f: f.write("".join(file_lines)) subprocess.run( "poetry run ruff format .; poetry run ruff --select I --fix .", cwd=cwd, shell=True, capture_output=True, text=True, ) if __name__ == "__main__": main() ```
110 lines
3.2 KiB
Python
110 lines
3.2 KiB
Python
from unittest.mock import Mock
|
|
|
|
import pytest
|
|
from langchain_core.documents import Document
|
|
|
|
from langchain_ai21 import AI21ContextualAnswers
|
|
from langchain_ai21.contextual_answers import ContextualAnswerInput
|
|
from tests.unit_tests.conftest import DUMMY_API_KEY
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
ids=[
|
|
"when_no_context__should_raise_exception",
|
|
"when_no_question__should_raise_exception",
|
|
"when_question_is_an_empty_string__should_raise_exception",
|
|
"when_context_is_an_empty_string__should_raise_exception",
|
|
"when_context_is_an_empty_list",
|
|
],
|
|
argnames="input",
|
|
argvalues=[
|
|
({"question": "What is the capital of France?"}),
|
|
({"context": "Paris is the capital of France"}),
|
|
({"question": "", "context": "Paris is the capital of France"}),
|
|
({"context": "", "question": "some question?"}),
|
|
({"context": [], "question": "What is the capital of France?"}),
|
|
],
|
|
)
|
|
def test_invoke__on_bad_input(
|
|
input: ContextualAnswerInput,
|
|
mock_client_with_contextual_answers: Mock,
|
|
) -> None:
|
|
tsm = AI21ContextualAnswers(
|
|
api_key=DUMMY_API_KEY, # type: ignore[arg-type]
|
|
client=mock_client_with_contextual_answers, # type: ignore[arg-type]
|
|
)
|
|
|
|
with pytest.raises(ValueError) as error:
|
|
tsm.invoke(input)
|
|
|
|
assert (
|
|
error.value.args[0]
|
|
== f"Input must contain a 'context' and 'question' fields. Got {input}"
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
ids=[
|
|
"when_context_is_not_str_or_list_of_docs_or_str",
|
|
],
|
|
argnames="input",
|
|
argvalues=[
|
|
({"context": 1242, "question": "What is the capital of France?"}),
|
|
],
|
|
)
|
|
def test_invoke__on_context_bad_input(
|
|
input: ContextualAnswerInput, mock_client_with_contextual_answers: Mock
|
|
) -> None:
|
|
tsm = AI21ContextualAnswers(
|
|
api_key=DUMMY_API_KEY, # type: ignore[arg-type]
|
|
client=mock_client_with_contextual_answers,
|
|
)
|
|
|
|
with pytest.raises(ValueError) as error:
|
|
tsm.invoke(input)
|
|
|
|
assert (
|
|
error.value.args[0] == f"Expected input to be a list of strings or Documents."
|
|
f" Received {type(input)}"
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
ids=[
|
|
"when_context_is_a_list_of_strings",
|
|
"when_context_is_a_list_of_documents",
|
|
"when_context_is_a_string",
|
|
],
|
|
argnames="input",
|
|
argvalues=[
|
|
(
|
|
{
|
|
"context": ["Paris is the capital of france"],
|
|
"question": "What is the capital of France?",
|
|
}
|
|
),
|
|
(
|
|
{
|
|
"context": [Document(page_content="Paris is the capital of france")],
|
|
"question": "What is the capital of France?",
|
|
}
|
|
),
|
|
(
|
|
{
|
|
"context": "Paris is the capital of france",
|
|
"question": "What is the capital of France?",
|
|
}
|
|
),
|
|
],
|
|
)
|
|
def test_invoke__on_good_input(
|
|
input: ContextualAnswerInput, mock_client_with_contextual_answers: Mock
|
|
) -> None:
|
|
tsm = AI21ContextualAnswers(
|
|
api_key=DUMMY_API_KEY, # type: ignore[arg-type]
|
|
client=mock_client_with_contextual_answers,
|
|
)
|
|
|
|
response = tsm.invoke(input)
|
|
assert isinstance(response, str)
|