mirror of
https://github.com/hwchase17/langchain.git
synced 2025-08-16 16:11:02 +00:00
```python """python scripts/update_mypy_ruff.py""" import glob import tomllib from pathlib import Path import toml import subprocess import re ROOT_DIR = Path(__file__).parents[1] def main(): for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True): print(path) with open(path, "rb") as f: pyproject = tomllib.load(f) try: pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = ( "^1.10" ) pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = ( "^0.5" ) except KeyError: continue with open(path, "w") as f: toml.dump(pyproject, f) cwd = "/".join(path.split("/")[:-1]) completed = subprocess.run( "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color", cwd=cwd, shell=True, capture_output=True, text=True, ) logs = completed.stdout.split("\n") to_ignore = {} for l in logs: if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l): path, line_no, error_type = re.match( "^(.*)\:(\d+)\: error:.*\[(.*)\]", l ).groups() if (path, line_no) in to_ignore: to_ignore[(path, line_no)].append(error_type) else: to_ignore[(path, line_no)] = [error_type] print(len(to_ignore)) for (error_path, line_no), error_types in to_ignore.items(): all_errors = ", ".join(error_types) full_path = f"{cwd}/{error_path}" try: with open(full_path, "r") as f: file_lines = f.readlines() except FileNotFoundError: continue file_lines[int(line_no) - 1] = ( file_lines[int(line_no) - 1][:-1] + f" # type: ignore[{all_errors}]\n" ) with open(full_path, "w") as f: f.write("".join(file_lines)) subprocess.run( "poetry run ruff format .; poetry run ruff --select I --fix .", cwd=cwd, shell=True, capture_output=True, text=True, ) if __name__ == "__main__": main() ```
103 lines
3.3 KiB
Python
103 lines
3.3 KiB
Python
"""Test embedding model integration."""
|
|
|
|
from typing import List
|
|
from unittest.mock import Mock
|
|
|
|
import pytest
|
|
from ai21 import AI21Client, MissingApiKeyError
|
|
from ai21.models import EmbedResponse, EmbedResult, EmbedType
|
|
from pytest_mock import MockerFixture
|
|
|
|
from langchain_ai21.embeddings import AI21Embeddings
|
|
from tests.unit_tests.conftest import DUMMY_API_KEY, temporarily_unset_api_key
|
|
|
|
_EXAMPLE_EMBEDDING_0 = [1.0, 2.0, 3.0]
|
|
_EXAMPLE_EMBEDDING_1 = [4.0, 5.0, 6.0]
|
|
_EXAMPLE_EMBEDDING_2 = [7.0, 8.0, 9.0]
|
|
|
|
_EXAMPLE_EMBEDDING_RESPONSE = EmbedResponse(
|
|
results=[
|
|
EmbedResult(_EXAMPLE_EMBEDDING_0),
|
|
EmbedResult(_EXAMPLE_EMBEDDING_1),
|
|
EmbedResult(_EXAMPLE_EMBEDDING_2),
|
|
],
|
|
id="test_id",
|
|
)
|
|
|
|
|
|
def test_initialization__when_no_api_key__should_raise_exception() -> None:
|
|
"""Test integration initialization."""
|
|
with temporarily_unset_api_key():
|
|
with pytest.raises(MissingApiKeyError):
|
|
AI21Embeddings()
|
|
|
|
|
|
@pytest.fixture
|
|
def mock_client_with_embeddings(mocker: MockerFixture) -> Mock:
|
|
mock_client = mocker.MagicMock(spec=AI21Client)
|
|
mock_client.embed = mocker.MagicMock()
|
|
mock_client.embed.create.return_value = _EXAMPLE_EMBEDDING_RESPONSE
|
|
|
|
return mock_client
|
|
|
|
|
|
def test_embed_query(mock_client_with_embeddings: Mock) -> None:
|
|
llm = AI21Embeddings(client=mock_client_with_embeddings, api_key=DUMMY_API_KEY) # type: ignore[arg-type]
|
|
|
|
text = "Hello embeddings world!"
|
|
response = llm.embed_query(text=text)
|
|
assert response == _EXAMPLE_EMBEDDING_0
|
|
mock_client_with_embeddings.embed.create.assert_called_once_with(
|
|
texts=[text],
|
|
type=EmbedType.QUERY,
|
|
)
|
|
|
|
|
|
def test_embed_documents(mock_client_with_embeddings: Mock) -> None:
|
|
llm = AI21Embeddings(client=mock_client_with_embeddings, api_key=DUMMY_API_KEY) # type: ignore[arg-type]
|
|
|
|
texts = ["Hello embeddings world!", "Some other text", "Some more text"]
|
|
response = llm.embed_documents(texts=texts)
|
|
assert response == [
|
|
_EXAMPLE_EMBEDDING_0,
|
|
_EXAMPLE_EMBEDDING_1,
|
|
_EXAMPLE_EMBEDDING_2,
|
|
]
|
|
mock_client_with_embeddings.embed.create.assert_called_once_with(
|
|
texts=texts,
|
|
type=EmbedType.SEGMENT,
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
ids=[
|
|
"empty_texts",
|
|
"chunk_size_greater_than_texts_length",
|
|
"chunk_size_equal_to_texts_length",
|
|
"chunk_size_less_than_texts_length",
|
|
"chunk_size_one_with_multiple_texts",
|
|
"chunk_size_greater_than_texts_length",
|
|
],
|
|
argnames=["texts", "chunk_size", "expected_internal_embeddings_calls"],
|
|
argvalues=[
|
|
([], 3, 0),
|
|
(["text1", "text2", "text3"], 5, 1),
|
|
(["text1", "text2", "text3"], 3, 1),
|
|
(["text1", "text2", "text3", "text4", "text5"], 2, 3),
|
|
(["text1", "text2", "text3"], 1, 3),
|
|
(["text1", "text2", "text3"], 10, 1),
|
|
],
|
|
)
|
|
def test_get_len_safe_embeddings(
|
|
mock_client_with_embeddings: Mock,
|
|
texts: List[str],
|
|
chunk_size: int,
|
|
expected_internal_embeddings_calls: int,
|
|
) -> None:
|
|
llm = AI21Embeddings(client=mock_client_with_embeddings, api_key=DUMMY_API_KEY) # type: ignore[arg-type]
|
|
llm.embed_documents(texts=texts, batch_size=chunk_size)
|
|
assert (
|
|
mock_client_with_embeddings.embed.create.call_count
|
|
== expected_internal_embeddings_calls
|
|
)
|