mirror of
https://github.com/hwchase17/langchain.git
synced 2025-08-20 18:07:05 +00:00
```python """python scripts/update_mypy_ruff.py""" import glob import tomllib from pathlib import Path import toml import subprocess import re ROOT_DIR = Path(__file__).parents[1] def main(): for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True): print(path) with open(path, "rb") as f: pyproject = tomllib.load(f) try: pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = ( "^1.10" ) pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = ( "^0.5" ) except KeyError: continue with open(path, "w") as f: toml.dump(pyproject, f) cwd = "/".join(path.split("/")[:-1]) completed = subprocess.run( "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color", cwd=cwd, shell=True, capture_output=True, text=True, ) logs = completed.stdout.split("\n") to_ignore = {} for l in logs: if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l): path, line_no, error_type = re.match( "^(.*)\:(\d+)\: error:.*\[(.*)\]", l ).groups() if (path, line_no) in to_ignore: to_ignore[(path, line_no)].append(error_type) else: to_ignore[(path, line_no)] = [error_type] print(len(to_ignore)) for (error_path, line_no), error_types in to_ignore.items(): all_errors = ", ".join(error_types) full_path = f"{cwd}/{error_path}" try: with open(full_path, "r") as f: file_lines = f.readlines() except FileNotFoundError: continue file_lines[int(line_no) - 1] = ( file_lines[int(line_no) - 1][:-1] + f" # type: ignore[{all_errors}]\n" ) with open(full_path, "w") as f: f.write("".join(file_lines)) subprocess.run( "poetry run ruff format .; poetry run ruff --select I --fix .", cwd=cwd, shell=True, capture_output=True, text=True, ) if __name__ == "__main__": main() ```
136 lines
4.6 KiB
Python
136 lines
4.6 KiB
Python
import uuid
|
|
from typing import Optional
|
|
|
|
import pytest # type: ignore[import-not-found]
|
|
from langchain_core.documents import Document
|
|
|
|
from langchain_qdrant import Qdrant
|
|
from tests.integration_tests.common import (
|
|
ConsistentFakeEmbeddings,
|
|
assert_documents_equals,
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize("batch_size", [1, 64])
|
|
@pytest.mark.parametrize("vector_name", [None, "my-vector"])
|
|
def test_qdrant_add_documents_extends_existing_collection(
|
|
batch_size: int, vector_name: Optional[str]
|
|
) -> None:
|
|
"""Test end to end construction and search."""
|
|
texts = ["foo", "bar", "baz"]
|
|
docsearch: Qdrant = Qdrant.from_texts(
|
|
texts,
|
|
ConsistentFakeEmbeddings(),
|
|
location=":memory:",
|
|
batch_size=batch_size,
|
|
vector_name=vector_name,
|
|
)
|
|
|
|
new_texts = ["foobar", "foobaz"]
|
|
docsearch.add_documents(
|
|
[Document(page_content=content) for content in new_texts], batch_size=batch_size
|
|
)
|
|
output = docsearch.similarity_search("foobar", k=1)
|
|
# ConsistentFakeEmbeddings return the same query embedding as the first document
|
|
# embedding computed in `embedding.embed_documents`. Thus, "foo" embedding is the
|
|
# same as "foobar" embedding
|
|
assert_documents_equals(output, [Document(page_content="foobar")])
|
|
|
|
|
|
@pytest.mark.parametrize("batch_size", [1, 64])
|
|
def test_qdrant_add_texts_returns_all_ids(batch_size: int) -> None:
|
|
"""Test end to end Qdrant.add_texts returns unique ids."""
|
|
docsearch: Qdrant = Qdrant.from_texts(
|
|
["foobar"],
|
|
ConsistentFakeEmbeddings(),
|
|
location=":memory:",
|
|
batch_size=batch_size,
|
|
)
|
|
|
|
ids = docsearch.add_texts(["foo", "bar", "baz"])
|
|
assert 3 == len(ids)
|
|
assert 3 == len(set(ids))
|
|
|
|
|
|
@pytest.mark.parametrize("vector_name", [None, "my-vector"])
|
|
def test_qdrant_add_texts_stores_duplicated_texts(vector_name: Optional[str]) -> None:
|
|
"""Test end to end Qdrant.add_texts stores duplicated texts separately."""
|
|
from qdrant_client import QdrantClient
|
|
from qdrant_client.http import models as rest
|
|
|
|
client = QdrantClient(":memory:")
|
|
collection_name = uuid.uuid4().hex
|
|
vectors_config = rest.VectorParams(size=10, distance=rest.Distance.COSINE)
|
|
if vector_name is not None:
|
|
vectors_config = {vector_name: vectors_config} # type: ignore[assignment]
|
|
client.recreate_collection(collection_name, vectors_config=vectors_config)
|
|
|
|
vec_store = Qdrant(
|
|
client,
|
|
collection_name,
|
|
embeddings=ConsistentFakeEmbeddings(),
|
|
vector_name=vector_name,
|
|
)
|
|
ids = vec_store.add_texts(["abc", "abc"], [{"a": 1}, {"a": 2}])
|
|
|
|
assert 2 == len(set(ids))
|
|
assert 2 == client.count(collection_name).count
|
|
|
|
|
|
@pytest.mark.parametrize("batch_size", [1, 64])
|
|
def test_qdrant_add_texts_stores_ids(batch_size: int) -> None:
|
|
"""Test end to end Qdrant.add_texts stores provided ids."""
|
|
from qdrant_client import QdrantClient
|
|
from qdrant_client.http import models as rest
|
|
|
|
ids = [
|
|
"fa38d572-4c31-4579-aedc-1960d79df6df",
|
|
"cdc1aa36-d6ab-4fb2-8a94-56674fd27484",
|
|
]
|
|
|
|
client = QdrantClient(":memory:")
|
|
collection_name = uuid.uuid4().hex
|
|
client.recreate_collection(
|
|
collection_name,
|
|
vectors_config=rest.VectorParams(size=10, distance=rest.Distance.COSINE),
|
|
)
|
|
|
|
vec_store = Qdrant(client, collection_name, ConsistentFakeEmbeddings())
|
|
returned_ids = vec_store.add_texts(["abc", "def"], ids=ids, batch_size=batch_size)
|
|
|
|
assert all(first == second for first, second in zip(ids, returned_ids))
|
|
assert 2 == client.count(collection_name).count
|
|
stored_ids = [point.id for point in client.scroll(collection_name)[0]]
|
|
assert set(ids) == set(stored_ids)
|
|
|
|
|
|
@pytest.mark.parametrize("vector_name", ["custom-vector"])
|
|
def test_qdrant_add_texts_stores_embeddings_as_named_vectors(vector_name: str) -> None:
|
|
"""Test end to end Qdrant.add_texts stores named vectors if name is provided."""
|
|
from qdrant_client import QdrantClient
|
|
from qdrant_client.http import models as rest
|
|
|
|
collection_name = uuid.uuid4().hex
|
|
|
|
client = QdrantClient(":memory:")
|
|
client.recreate_collection(
|
|
collection_name,
|
|
vectors_config={
|
|
vector_name: rest.VectorParams(size=10, distance=rest.Distance.COSINE)
|
|
},
|
|
)
|
|
|
|
vec_store = Qdrant(
|
|
client,
|
|
collection_name,
|
|
ConsistentFakeEmbeddings(),
|
|
vector_name=vector_name,
|
|
)
|
|
vec_store.add_texts(["lorem", "ipsum", "dolor", "sit", "amet"])
|
|
|
|
assert 5 == client.count(collection_name).count
|
|
assert all(
|
|
vector_name in point.vector # type: ignore[operator]
|
|
for point in client.scroll(collection_name, with_vectors=True)[0]
|
|
)
|