mirror of
https://github.com/hwchase17/langchain.git
synced 2025-08-15 15:46:47 +00:00
```python """python scripts/update_mypy_ruff.py""" import glob import tomllib from pathlib import Path import toml import subprocess import re ROOT_DIR = Path(__file__).parents[1] def main(): for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True): print(path) with open(path, "rb") as f: pyproject = tomllib.load(f) try: pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = ( "^1.10" ) pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = ( "^0.5" ) except KeyError: continue with open(path, "w") as f: toml.dump(pyproject, f) cwd = "/".join(path.split("/")[:-1]) completed = subprocess.run( "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color", cwd=cwd, shell=True, capture_output=True, text=True, ) logs = completed.stdout.split("\n") to_ignore = {} for l in logs: if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l): path, line_no, error_type = re.match( "^(.*)\:(\d+)\: error:.*\[(.*)\]", l ).groups() if (path, line_no) in to_ignore: to_ignore[(path, line_no)].append(error_type) else: to_ignore[(path, line_no)] = [error_type] print(len(to_ignore)) for (error_path, line_no), error_types in to_ignore.items(): all_errors = ", ".join(error_types) full_path = f"{cwd}/{error_path}" try: with open(full_path, "r") as f: file_lines = f.readlines() except FileNotFoundError: continue file_lines[int(line_no) - 1] = ( file_lines[int(line_no) - 1][:-1] + f" # type: ignore[{all_errors}]\n" ) with open(full_path, "w") as f: f.write("".join(file_lines)) subprocess.run( "poetry run ruff format .; poetry run ruff --select I --fix .", cwd=cwd, shell=True, capture_output=True, text=True, ) if __name__ == "__main__": main() ```
137 lines
4.4 KiB
Python
137 lines
4.4 KiB
Python
import pytest # type: ignore[import-not-found]
|
|
from langchain_core.messages import BaseMessage, HumanMessage, SystemMessage
|
|
|
|
from langchain_together import ChatTogether
|
|
|
|
|
|
def test_chat_together_model() -> None:
|
|
"""Test ChatTogether wrapper handles model_name."""
|
|
chat = ChatTogether(model="foo")
|
|
assert chat.model_name == "foo"
|
|
chat = ChatTogether(model_name="bar") # type: ignore[call-arg]
|
|
assert chat.model_name == "bar"
|
|
|
|
|
|
def test_chat_together_system_message() -> None:
|
|
"""Test ChatOpenAI wrapper with system message."""
|
|
chat = ChatTogether(max_tokens=10)
|
|
system_message = SystemMessage(content="You are to chat with the user.")
|
|
human_message = HumanMessage(content="Hello")
|
|
response = chat([system_message, human_message])
|
|
assert isinstance(response, BaseMessage)
|
|
assert isinstance(response.content, str)
|
|
|
|
|
|
def test_chat_together_llm_output_contains_model_name() -> None:
|
|
"""Test llm_output contains model_name."""
|
|
chat = ChatTogether(max_tokens=10)
|
|
message = HumanMessage(content="Hello")
|
|
llm_result = chat.generate([[message]])
|
|
assert llm_result.llm_output is not None
|
|
assert llm_result.llm_output["model_name"] == chat.model_name
|
|
|
|
|
|
def test_chat_together_streaming_llm_output_contains_model_name() -> None:
|
|
"""Test llm_output contains model_name."""
|
|
chat = ChatTogether(max_tokens=10, streaming=True)
|
|
message = HumanMessage(content="Hello")
|
|
llm_result = chat.generate([[message]])
|
|
assert llm_result.llm_output is not None
|
|
assert llm_result.llm_output["model_name"] == chat.model_name
|
|
|
|
|
|
def test_chat_together_invalid_streaming_params() -> None:
|
|
"""Test that streaming correctly invokes on_llm_new_token callback."""
|
|
with pytest.raises(ValueError):
|
|
ChatTogether(
|
|
max_tokens=10,
|
|
streaming=True,
|
|
temperature=0,
|
|
n=5,
|
|
)
|
|
|
|
|
|
def test_chat_together_extra_kwargs() -> None:
|
|
"""Test extra kwargs to chat together."""
|
|
# Check that foo is saved in extra_kwargs.
|
|
llm = ChatTogether(foo=3, max_tokens=10) # type: ignore[call-arg]
|
|
assert llm.max_tokens == 10
|
|
assert llm.model_kwargs == {"foo": 3}
|
|
|
|
# Test that if extra_kwargs are provided, they are added to it.
|
|
llm = ChatTogether(foo=3, model_kwargs={"bar": 2}) # type: ignore[call-arg]
|
|
assert llm.model_kwargs == {"foo": 3, "bar": 2}
|
|
|
|
# Test that if provided twice it errors
|
|
with pytest.raises(ValueError):
|
|
ChatTogether(foo=3, model_kwargs={"foo": 2}) # type: ignore[call-arg]
|
|
|
|
# Test that if explicit param is specified in kwargs it errors
|
|
with pytest.raises(ValueError):
|
|
ChatTogether(model_kwargs={"temperature": 0.2})
|
|
|
|
# Test that "model" cannot be specified in kwargs
|
|
with pytest.raises(ValueError):
|
|
ChatTogether(model_kwargs={"model": "meta-llama/Llama-3-8b-chat-hf"})
|
|
|
|
|
|
def test_stream() -> None:
|
|
"""Test streaming tokens from Together AI."""
|
|
llm = ChatTogether()
|
|
|
|
for token in llm.stream("I'm Pickle Rick"):
|
|
assert isinstance(token.content, str)
|
|
|
|
|
|
async def test_astream() -> None:
|
|
"""Test streaming tokens from Together AI."""
|
|
llm = ChatTogether()
|
|
|
|
async for token in llm.astream("I'm Pickle Rick"):
|
|
assert isinstance(token.content, str)
|
|
|
|
|
|
async def test_abatch() -> None:
|
|
"""Test streaming tokens from ChatTogether."""
|
|
llm = ChatTogether()
|
|
|
|
result = await llm.abatch(["I'm Pickle Rick", "I'm not Pickle Rick"])
|
|
for token in result:
|
|
assert isinstance(token.content, str)
|
|
|
|
|
|
async def test_abatch_tags() -> None:
|
|
"""Test batch tokens from ChatTogether."""
|
|
llm = ChatTogether()
|
|
|
|
result = await llm.abatch(
|
|
["I'm Pickle Rick", "I'm not Pickle Rick"], config={"tags": ["foo"]}
|
|
)
|
|
for token in result:
|
|
assert isinstance(token.content, str)
|
|
|
|
|
|
def test_batch() -> None:
|
|
"""Test batch tokens from ChatTogether."""
|
|
llm = ChatTogether()
|
|
|
|
result = llm.batch(["I'm Pickle Rick", "I'm not Pickle Rick"])
|
|
for token in result:
|
|
assert isinstance(token.content, str)
|
|
|
|
|
|
async def test_ainvoke() -> None:
|
|
"""Test invoke tokens from ChatTogether."""
|
|
llm = ChatTogether()
|
|
|
|
result = await llm.ainvoke("I'm Pickle Rick", config={"tags": ["foo"]})
|
|
assert isinstance(result.content, str)
|
|
|
|
|
|
def test_invoke() -> None:
|
|
"""Test invoke tokens from ChatTogether."""
|
|
llm = ChatTogether()
|
|
|
|
result = llm.invoke("I'm Pickle Rick", config=dict(tags=["foo"]))
|
|
assert isinstance(result.content, str)
|