langchain/libs/langchain_v1/tests/integration_tests/embeddings/test_base.py
Eugene Yurtsev 56dde3ade3
feat(langchain): v1 scaffolding (#32166)
This PR adds scaffolding for langchain 1.0 entry package.

Most contents have been removed. 

Currently remaining entrypoints for:

* chat models
* embedding models
* memory -> trimming messages, filtering messages and counting tokens
[we may remove this]
* prompts -> we may remove some prompts
* storage: primarily to support cache backed embeddings, may remove the
kv store
* tools -> report tool primitives

Things to be added:

* Selected agent implementations
* Selected workflows
* Common primitives: messages, Document
* Primitives for type hinting: BaseChatModel, BaseEmbeddings
* Selected retrievers
* Selected text splitters

Things to be removed:

* Globals needs to be removed (needs an update in langchain core)


Todos: 

* TBD indexing api (requires sqlalchemy which we don't want as a
dependency)
* Be explicit about public/private interfaces (e.g., likely rename
chat_models.base.py to something more internal)
* Remove dockerfiles
* Update module doc-strings and README.md
2025-07-24 09:47:48 -04:00

45 lines
1.3 KiB
Python

"""Test embeddings base module."""
import importlib
import pytest
from langchain_core.embeddings import Embeddings
from langchain.embeddings.base import _SUPPORTED_PROVIDERS, init_embeddings
@pytest.mark.parametrize(
("provider", "model"),
[
("openai", "text-embedding-3-large"),
("google_vertexai", "text-embedding-gecko@003"),
("bedrock", "amazon.titan-embed-text-v1"),
("cohere", "embed-english-v2.0"),
],
)
async def test_init_embedding_model(provider: str, model: str) -> None:
package = _SUPPORTED_PROVIDERS[provider]
try:
importlib.import_module(package)
except ImportError:
pytest.skip(f"Package {package} is not installed")
model_colon = init_embeddings(f"{provider}:{model}")
assert isinstance(model_colon, Embeddings)
model_explicit = init_embeddings(
model=model,
provider=provider,
)
assert isinstance(model_explicit, Embeddings)
text = "Hello world"
embedding_colon = await model_colon.aembed_query(text)
assert isinstance(embedding_colon, list)
assert all(isinstance(x, float) for x in embedding_colon)
embedding_explicit = await model_explicit.aembed_query(text)
assert isinstance(embedding_explicit, list)
assert all(isinstance(x, float) for x in embedding_explicit)