mirror of
https://github.com/hwchase17/langchain.git
synced 2025-08-10 05:20:39 +00:00
This PR adds scaffolding for langchain 1.0 entry package. Most contents have been removed. Currently remaining entrypoints for: * chat models * embedding models * memory -> trimming messages, filtering messages and counting tokens [we may remove this] * prompts -> we may remove some prompts * storage: primarily to support cache backed embeddings, may remove the kv store * tools -> report tool primitives Things to be added: * Selected agent implementations * Selected workflows * Common primitives: messages, Document * Primitives for type hinting: BaseChatModel, BaseEmbeddings * Selected retrievers * Selected text splitters Things to be removed: * Globals needs to be removed (needs an update in langchain core) Todos: * TBD indexing api (requires sqlalchemy which we don't want as a dependency) * Be explicit about public/private interfaces (e.g., likely rename chat_models.base.py to something more internal) * Remove dockerfiles * Update module doc-strings and README.md
45 lines
1.3 KiB
Python
45 lines
1.3 KiB
Python
"""Test embeddings base module."""
|
|
|
|
import importlib
|
|
|
|
import pytest
|
|
from langchain_core.embeddings import Embeddings
|
|
|
|
from langchain.embeddings.base import _SUPPORTED_PROVIDERS, init_embeddings
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
("provider", "model"),
|
|
[
|
|
("openai", "text-embedding-3-large"),
|
|
("google_vertexai", "text-embedding-gecko@003"),
|
|
("bedrock", "amazon.titan-embed-text-v1"),
|
|
("cohere", "embed-english-v2.0"),
|
|
],
|
|
)
|
|
async def test_init_embedding_model(provider: str, model: str) -> None:
|
|
package = _SUPPORTED_PROVIDERS[provider]
|
|
try:
|
|
importlib.import_module(package)
|
|
except ImportError:
|
|
pytest.skip(f"Package {package} is not installed")
|
|
|
|
model_colon = init_embeddings(f"{provider}:{model}")
|
|
assert isinstance(model_colon, Embeddings)
|
|
|
|
model_explicit = init_embeddings(
|
|
model=model,
|
|
provider=provider,
|
|
)
|
|
assert isinstance(model_explicit, Embeddings)
|
|
|
|
text = "Hello world"
|
|
|
|
embedding_colon = await model_colon.aembed_query(text)
|
|
assert isinstance(embedding_colon, list)
|
|
assert all(isinstance(x, float) for x in embedding_colon)
|
|
|
|
embedding_explicit = await model_explicit.aembed_query(text)
|
|
assert isinstance(embedding_explicit, list)
|
|
assert all(isinstance(x, float) for x in embedding_explicit)
|