langchain/libs/langchain_v1/tests/unit_tests/stubs.py
Eugene Yurtsev 56dde3ade3
feat(langchain): v1 scaffolding (#32166)
This PR adds scaffolding for langchain 1.0 entry package.

Most contents have been removed. 

Currently remaining entrypoints for:

* chat models
* embedding models
* memory -> trimming messages, filtering messages and counting tokens
[we may remove this]
* prompts -> we may remove some prompts
* storage: primarily to support cache backed embeddings, may remove the
kv store
* tools -> report tool primitives

Things to be added:

* Selected agent implementations
* Selected workflows
* Common primitives: messages, Document
* Primitives for type hinting: BaseChatModel, BaseEmbeddings
* Selected retrievers
* Selected text splitters

Things to be removed:

* Globals needs to be removed (needs an update in langchain core)


Todos: 

* TBD indexing api (requires sqlalchemy which we don't want as a
dependency)
* Be explicit about public/private interfaces (e.g., likely rename
chat_models.base.py to something more internal)
* Remove dockerfiles
* Update module doc-strings and README.md
2025-07-24 09:47:48 -04:00

47 lines
1.2 KiB
Python

from typing import Any
from langchain_core.documents import Document
from langchain_core.messages import AIMessage, AIMessageChunk, HumanMessage
class AnyStr(str):
__slots__ = ()
def __eq__(self, other: object) -> bool:
return isinstance(other, str)
# The code below creates version of pydantic models
# that will work in unit tests with AnyStr as id field
# Please note that the `id` field is assigned AFTER the model is created
# to workaround an issue with pydantic ignoring the __eq__ method on
# subclassed strings.
def _AnyIdDocument(**kwargs: Any) -> Document:
"""Create a document with an id field."""
message = Document(**kwargs)
message.id = AnyStr()
return message
def _AnyIdAIMessage(**kwargs: Any) -> AIMessage:
"""Create ai message with an any id field."""
message = AIMessage(**kwargs)
message.id = AnyStr()
return message
def _AnyIdAIMessageChunk(**kwargs: Any) -> AIMessageChunk:
"""Create ai message with an any id field."""
message = AIMessageChunk(**kwargs)
message.id = AnyStr()
return message
def _AnyIdHumanMessage(**kwargs: Any) -> HumanMessage:
"""Create a human with an any id field."""
message = HumanMessage(**kwargs)
message.id = AnyStr()
return message