Files
Mason Daugherty 8670b24c8e test(groq): xfail tool integration test (#32960)
Groq models have known issues with tool calling consistency,
[particularly with complex tools derived from
runnables](https://github.com/langchain-ai/langchain/discussions/19990).
[(more)](https://github.com/langchain-ai/langchain/discussions/24309)

xfail until we can dedicate time to wrangling their API/model handling
2025-09-15 14:23:22 -04:00

65 lines
2.1 KiB
Python

"""Standard LangChain interface tests."""
from typing import Literal
import pytest
from langchain_core.language_models import BaseChatModel
from langchain_core.rate_limiters import InMemoryRateLimiter
from langchain_core.tools import BaseTool
from langchain_tests.integration_tests import (
ChatModelIntegrationTests,
)
from langchain_groq import ChatGroq
rate_limiter = InMemoryRateLimiter(requests_per_second=0.2)
class TestGroq(ChatModelIntegrationTests):
@property
def chat_model_class(self) -> type[BaseChatModel]:
return ChatGroq
@property
def chat_model_params(self) -> dict:
return {"model": "llama-3.3-70b-versatile", "rate_limiter": rate_limiter}
@pytest.mark.xfail(reason="Not yet implemented.")
def test_tool_message_histories_list_content(
self, model: BaseChatModel, my_adder_tool: BaseTool
) -> None:
super().test_tool_message_histories_list_content(model, my_adder_tool)
@pytest.mark.xfail(
reason="Groq models have inconsistent tool calling performance. See: "
"https://github.com/langchain-ai/langchain/discussions/19990"
)
def test_bind_runnables_as_tools(self, model: BaseChatModel) -> None:
super().test_bind_runnables_as_tools(model)
@property
def supports_json_mode(self) -> bool:
return True
@pytest.mark.parametrize("schema_type", ["pydantic", "typeddict", "json_schema"])
def test_json_schema(
schema_type: Literal["pydantic", "typeddict", "json_schema"],
) -> None:
class JsonSchemaTests(ChatModelIntegrationTests):
@property
def chat_model_class(self) -> type[ChatGroq]:
return ChatGroq
@property
def chat_model_params(self) -> dict:
return {"model": "openai/gpt-oss-120b", "rate_limiter": rate_limiter}
@property
def structured_output_kwargs(self) -> dict:
return {"method": "json_schema"}
test_instance = JsonSchemaTests()
model = test_instance.chat_model_class(**test_instance.chat_model_params)
JsonSchemaTests().test_structured_output(model, schema_type)