mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-28 17:38:36 +00:00
Using `pyupgrade` to get all `partners` code up to 3.9 standards (mostly, fixing old `typing` imports).
167 lines
6.3 KiB
Python
167 lines
6.3 KiB
Python
from typing import Any, Optional
|
|
|
|
from langchain_core.embeddings import Embeddings
|
|
from pydantic import BaseModel, ConfigDict, Field
|
|
|
|
from ..utils.import_utils import (
|
|
IMPORT_ERROR,
|
|
is_ipex_available,
|
|
is_optimum_intel_available,
|
|
is_optimum_intel_version,
|
|
)
|
|
|
|
DEFAULT_MODEL_NAME = "sentence-transformers/all-mpnet-base-v2"
|
|
|
|
_MIN_OPTIMUM_VERSION = "1.22"
|
|
|
|
|
|
class HuggingFaceEmbeddings(BaseModel, Embeddings):
|
|
"""HuggingFace sentence_transformers embedding models.
|
|
|
|
To use, you should have the ``sentence_transformers`` python package installed.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_huggingface import HuggingFaceEmbeddings
|
|
|
|
model_name = "sentence-transformers/all-mpnet-base-v2"
|
|
model_kwargs = {'device': 'cpu'}
|
|
encode_kwargs = {'normalize_embeddings': False}
|
|
hf = HuggingFaceEmbeddings(
|
|
model_name=model_name,
|
|
model_kwargs=model_kwargs,
|
|
encode_kwargs=encode_kwargs
|
|
)
|
|
"""
|
|
|
|
model_name: str = Field(default=DEFAULT_MODEL_NAME, alias="model")
|
|
"""Model name to use."""
|
|
cache_folder: Optional[str] = None
|
|
"""Path to store models.
|
|
Can be also set by SENTENCE_TRANSFORMERS_HOME environment variable."""
|
|
model_kwargs: dict[str, Any] = Field(default_factory=dict)
|
|
"""Keyword arguments to pass to the Sentence Transformer model, such as `device`,
|
|
`prompts`, `default_prompt_name`, `revision`, `trust_remote_code`, or `token`.
|
|
See also the Sentence Transformer documentation: https://sbert.net/docs/package_reference/SentenceTransformer.html#sentence_transformers.SentenceTransformer"""
|
|
encode_kwargs: dict[str, Any] = Field(default_factory=dict)
|
|
"""Keyword arguments to pass when calling the `encode` method for the documents of
|
|
the Sentence Transformer model, such as `prompt_name`, `prompt`, `batch_size`,
|
|
`precision`, `normalize_embeddings`, and more.
|
|
See also the Sentence Transformer documentation: https://sbert.net/docs/package_reference/SentenceTransformer.html#sentence_transformers.SentenceTransformer.encode"""
|
|
query_encode_kwargs: dict[str, Any] = Field(default_factory=dict)
|
|
"""Keyword arguments to pass when calling the `encode` method for the query of
|
|
the Sentence Transformer model, such as `prompt_name`, `prompt`, `batch_size`,
|
|
`precision`, `normalize_embeddings`, and more.
|
|
See also the Sentence Transformer documentation: https://sbert.net/docs/package_reference/SentenceTransformer.html#sentence_transformers.SentenceTransformer.encode"""
|
|
multi_process: bool = False
|
|
"""Run encode() on multiple GPUs."""
|
|
show_progress: bool = False
|
|
"""Whether to show a progress bar."""
|
|
|
|
def __init__(self, **kwargs: Any):
|
|
"""Initialize the sentence_transformer."""
|
|
super().__init__(**kwargs)
|
|
try:
|
|
import sentence_transformers # type: ignore[import]
|
|
except ImportError as exc:
|
|
raise ImportError(
|
|
"Could not import sentence_transformers python package. "
|
|
"Please install it with `pip install sentence-transformers`."
|
|
) from exc
|
|
|
|
if self.model_kwargs.get("backend", "torch") == "ipex":
|
|
if not is_optimum_intel_available() or not is_ipex_available():
|
|
raise ImportError(
|
|
f'Backend: ipex {IMPORT_ERROR.format("optimum[ipex]")}'
|
|
)
|
|
|
|
if is_optimum_intel_version("<", _MIN_OPTIMUM_VERSION):
|
|
raise ImportError(
|
|
f"Backend: ipex requires optimum-intel>="
|
|
f"{_MIN_OPTIMUM_VERSION}. You can install it with pip: "
|
|
"`pip install --upgrade --upgrade-strategy eager "
|
|
"`optimum[ipex]`."
|
|
)
|
|
|
|
from optimum.intel import IPEXSentenceTransformer # type: ignore[import]
|
|
|
|
model_cls = IPEXSentenceTransformer
|
|
|
|
else:
|
|
model_cls = sentence_transformers.SentenceTransformer
|
|
|
|
self._client = model_cls(
|
|
self.model_name, cache_folder=self.cache_folder, **self.model_kwargs
|
|
)
|
|
|
|
model_config = ConfigDict(
|
|
extra="forbid",
|
|
protected_namespaces=(),
|
|
populate_by_name=True,
|
|
)
|
|
|
|
def _embed(
|
|
self, texts: list[str], encode_kwargs: dict[str, Any]
|
|
) -> list[list[float]]:
|
|
"""
|
|
Embed a text using the HuggingFace transformer model.
|
|
|
|
Args:
|
|
texts: The list of texts to embed.
|
|
encode_kwargs: Keyword arguments to pass when calling the
|
|
`encode` method for the documents of the SentenceTransformer
|
|
encode method.
|
|
|
|
Returns:
|
|
List of embeddings, one for each text.
|
|
"""
|
|
import sentence_transformers # type: ignore[import]
|
|
|
|
texts = list(map(lambda x: x.replace("\n", " "), texts))
|
|
if self.multi_process:
|
|
pool = self._client.start_multi_process_pool()
|
|
embeddings = self._client.encode_multi_process(texts, pool)
|
|
sentence_transformers.SentenceTransformer.stop_multi_process_pool(pool)
|
|
else:
|
|
embeddings = self._client.encode(
|
|
texts,
|
|
show_progress_bar=self.show_progress,
|
|
**encode_kwargs, # type: ignore
|
|
)
|
|
|
|
if isinstance(embeddings, list):
|
|
raise TypeError(
|
|
"Expected embeddings to be a Tensor or a numpy array, "
|
|
"got a list instead."
|
|
)
|
|
|
|
return embeddings.tolist()
|
|
|
|
def embed_documents(self, texts: list[str]) -> list[list[float]]:
|
|
"""Compute doc embeddings using a HuggingFace transformer model.
|
|
|
|
Args:
|
|
texts: The list of texts to embed.
|
|
|
|
Returns:
|
|
List of embeddings, one for each text.
|
|
"""
|
|
return self._embed(texts, self.encode_kwargs)
|
|
|
|
def embed_query(self, text: str) -> list[float]:
|
|
"""Compute query embeddings using a HuggingFace transformer model.
|
|
|
|
Args:
|
|
text: The text to embed.
|
|
|
|
Returns:
|
|
Embeddings for the text.
|
|
"""
|
|
embed_kwargs = (
|
|
self.query_encode_kwargs
|
|
if len(self.query_encode_kwargs) > 0
|
|
else self.encode_kwargs
|
|
)
|
|
return self._embed([text], embed_kwargs)[0]
|