mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-27 08:58:48 +00:00
160 lines
5.6 KiB
Python
160 lines
5.6 KiB
Python
import os
|
|
from typing import Any, Optional
|
|
|
|
from langchain_core.embeddings import Embeddings
|
|
from langchain_core.utils import from_env
|
|
from pydantic import BaseModel, ConfigDict, Field, model_validator
|
|
from typing_extensions import Self
|
|
|
|
DEFAULT_MODEL = "sentence-transformers/all-mpnet-base-v2"
|
|
VALID_TASKS = ("feature-extraction",)
|
|
|
|
|
|
class HuggingFaceEndpointEmbeddings(BaseModel, Embeddings):
|
|
"""HuggingFaceHub embedding models.
|
|
|
|
To use, you should have the ``huggingface_hub`` python package installed, and the
|
|
environment variable ``HUGGINGFACEHUB_API_TOKEN`` set with your API token, or pass
|
|
it as a named parameter to the constructor.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_huggingface import HuggingFaceEndpointEmbeddings
|
|
model = "sentence-transformers/all-mpnet-base-v2"
|
|
hf = HuggingFaceEndpointEmbeddings(
|
|
model=model,
|
|
task="feature-extraction",
|
|
huggingfacehub_api_token="my-api-key",
|
|
)
|
|
"""
|
|
|
|
client: Any = None #: :meta private:
|
|
async_client: Any = None #: :meta private:
|
|
model: Optional[str] = None
|
|
"""Model name to use."""
|
|
provider: Optional[str] = None
|
|
"""Name of the provider to use for inference with the model specified in
|
|
``repo_id``. e.g. "sambanova". if not specified, defaults to HF Inference API.
|
|
available providers can be found in the [huggingface_hub documentation](https://huggingface.co/docs/huggingface_hub/guides/inference#supported-providers-and-tasks)."""
|
|
repo_id: Optional[str] = None
|
|
"""Huggingfacehub repository id, for backward compatibility."""
|
|
task: Optional[str] = "feature-extraction"
|
|
"""Task to call the model with."""
|
|
model_kwargs: Optional[dict] = None
|
|
"""Keyword arguments to pass to the model."""
|
|
|
|
huggingfacehub_api_token: Optional[str] = Field(
|
|
default_factory=from_env("HUGGINGFACEHUB_API_TOKEN", default=None)
|
|
)
|
|
|
|
model_config = ConfigDict(
|
|
extra="forbid",
|
|
protected_namespaces=(),
|
|
)
|
|
|
|
@model_validator(mode="after")
|
|
def validate_environment(self) -> Self:
|
|
"""Validate that api key and python package exists in environment."""
|
|
huggingfacehub_api_token = self.huggingfacehub_api_token or os.getenv(
|
|
"HF_TOKEN"
|
|
)
|
|
|
|
try:
|
|
from huggingface_hub import ( # type: ignore[import]
|
|
AsyncInferenceClient,
|
|
InferenceClient,
|
|
)
|
|
|
|
if self.model:
|
|
self.repo_id = self.model
|
|
elif self.repo_id:
|
|
self.model = self.repo_id
|
|
else:
|
|
self.model = DEFAULT_MODEL
|
|
self.repo_id = DEFAULT_MODEL
|
|
|
|
client = InferenceClient(
|
|
model=self.model,
|
|
token=huggingfacehub_api_token,
|
|
provider=self.provider, # type: ignore[arg-type]
|
|
)
|
|
|
|
async_client = AsyncInferenceClient(
|
|
model=self.model,
|
|
token=huggingfacehub_api_token,
|
|
provider=self.provider, # type: ignore[arg-type]
|
|
)
|
|
|
|
if self.task not in VALID_TASKS:
|
|
raise ValueError(
|
|
f"Got invalid task {self.task}, "
|
|
f"currently only {VALID_TASKS} are supported"
|
|
)
|
|
self.client = client
|
|
self.async_client = async_client
|
|
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import huggingface_hub python package. "
|
|
"Please install it with `pip install huggingface_hub`."
|
|
)
|
|
return self
|
|
|
|
def embed_documents(self, texts: list[str]) -> list[list[float]]:
|
|
"""Call out to HuggingFaceHub's embedding endpoint for embedding search docs.
|
|
|
|
Args:
|
|
texts: The list of texts to embed.
|
|
|
|
Returns:
|
|
List of embeddings, one for each text.
|
|
"""
|
|
# replace newlines, which can negatively affect performance.
|
|
texts = [text.replace("\n", " ") for text in texts]
|
|
_model_kwargs = self.model_kwargs or {}
|
|
# api doc: https://huggingface.github.io/text-embeddings-inference/#/Text%20Embeddings%20Inference/embed
|
|
responses = self.client.feature_extraction(text=texts, **_model_kwargs)
|
|
return responses.tolist()
|
|
|
|
async def aembed_documents(self, texts: list[str]) -> list[list[float]]:
|
|
"""Async Call to HuggingFaceHub's embedding endpoint for embedding search docs.
|
|
|
|
Args:
|
|
texts: The list of texts to embed.
|
|
|
|
Returns:
|
|
List of embeddings, one for each text.
|
|
"""
|
|
# replace newlines, which can negatively affect performance.
|
|
texts = [text.replace("\n", " ") for text in texts]
|
|
_model_kwargs = self.model_kwargs or {}
|
|
responses = await self.async_client.feature_extraction(
|
|
text=texts, **_model_kwargs
|
|
)
|
|
return responses.tolist()
|
|
|
|
def embed_query(self, text: str) -> list[float]:
|
|
"""Call out to HuggingFaceHub's embedding endpoint for embedding query text.
|
|
|
|
Args:
|
|
text: The text to embed.
|
|
|
|
Returns:
|
|
Embeddings for the text.
|
|
"""
|
|
response = self.embed_documents([text])[0]
|
|
return response
|
|
|
|
async def aembed_query(self, text: str) -> list[float]:
|
|
"""Async Call to HuggingFaceHub's embedding endpoint for embedding query text.
|
|
|
|
Args:
|
|
text: The text to embed.
|
|
|
|
Returns:
|
|
Embeddings for the text.
|
|
"""
|
|
response = (await self.aembed_documents([text]))[0]
|
|
return response
|