langchain/libs/partners/openai/tests/unit_tests/embeddings/test_base.py

99 lines
3.6 KiB
Python

import os
from unittest.mock import patch
import pytest
from langchain_openai import OpenAIEmbeddings
os.environ["OPENAI_API_KEY"] = "foo"
def test_openai_invalid_model_kwargs() -> None:
with pytest.raises(ValueError):
OpenAIEmbeddings(model_kwargs={"model": "foo"})
def test_openai_incorrect_field() -> None:
with pytest.warns(match="not default parameter"):
llm = OpenAIEmbeddings(foo="bar") # type: ignore[call-arg]
assert llm.model_kwargs == {"foo": "bar"}
def test_embed_documents_with_custom_chunk_size() -> None:
embeddings = OpenAIEmbeddings(chunk_size=2)
texts = ["text1", "text2", "text3", "text4"]
custom_chunk_size = 3
with patch.object(embeddings.client, "create") as mock_create:
mock_create.side_effect = [
{"data": [{"embedding": [0.1, 0.2]}, {"embedding": [0.3, 0.4]}]},
{"data": [{"embedding": [0.5, 0.6]}, {"embedding": [0.7, 0.8]}]},
]
result = embeddings.embed_documents(texts, chunk_size=custom_chunk_size)
_, tokens, __ = embeddings._tokenize(texts, custom_chunk_size)
mock_create.call_args
mock_create.assert_any_call(input=tokens[0:3], **embeddings._invocation_params)
mock_create.assert_any_call(input=tokens[3:4], **embeddings._invocation_params)
assert result == [[0.1, 0.2], [0.3, 0.4], [0.5, 0.6], [0.7, 0.8]]
def test_embed_documents_with_custom_chunk_size_no_check_ctx_length() -> None:
embeddings = OpenAIEmbeddings(chunk_size=2, check_embedding_ctx_length=False)
texts = ["text1", "text2", "text3", "text4"]
custom_chunk_size = 3
with patch.object(embeddings.client, "create") as mock_create:
mock_create.side_effect = [
{"data": [{"embedding": [0.1, 0.2]}, {"embedding": [0.3, 0.4]}]},
{"data": [{"embedding": [0.5, 0.6]}, {"embedding": [0.7, 0.8]}]},
]
result = embeddings.embed_documents(texts, chunk_size=custom_chunk_size)
mock_create.call_args
mock_create.assert_any_call(input=texts[0:3], **embeddings._invocation_params)
mock_create.assert_any_call(input=texts[3:4], **embeddings._invocation_params)
assert result == [[0.1, 0.2], [0.3, 0.4], [0.5, 0.6], [0.7, 0.8]]
def test_embed_with_kwargs() -> None:
embeddings = OpenAIEmbeddings(
model="text-embedding-3-small", check_embedding_ctx_length=False
)
texts = ["text1", "text2"]
with patch.object(embeddings.client, "create") as mock_create:
mock_create.side_effect = [
{"data": [{"embedding": [0.1, 0.2, 0.3]}, {"embedding": [0.4, 0.5, 0.6]}]}
]
result = embeddings.embed_documents(texts, dimensions=3)
mock_create.assert_any_call(
input=texts, dimensions=3, **embeddings._invocation_params
)
assert result == [[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]]
async def test_embed_with_kwargs_async() -> None:
embeddings = OpenAIEmbeddings(
model="text-embedding-3-small",
check_embedding_ctx_length=False,
dimensions=4, # also check that runtime kwargs take precedence
)
texts = ["text1", "text2"]
with patch.object(embeddings.async_client, "create") as mock_create:
mock_create.side_effect = [
{"data": [{"embedding": [0.1, 0.2, 0.3]}, {"embedding": [0.4, 0.5, 0.6]}]}
]
result = await embeddings.aembed_documents(texts, dimensions=3)
client_kwargs = embeddings._invocation_params.copy()
assert client_kwargs["dimensions"] == 4
client_kwargs["dimensions"] = 3
mock_create.assert_any_call(input=texts, **client_kwargs)
assert result == [[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]]